Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The number of peptide-like scaffolds found in late-stage drug development is increasing, but a critical unanswered question in the field is whether substituents (side chains) or the backbone drive passive permeability. The backbone is scrutinized in this study. Five series of macrocyclic peptidic compounds were prepared, and their passive permeability was determined (PAMPA, Caco-2), to delineate structure-permeability relationships. Each series was based on the cell-permeable antiarrhythmic compound -verticilide, a cyclic oligomeric depsipeptide (COD) containing repeating ester/-Me amide didepsipeptide monomers. One key finding is that native lipophilic ester functionality can impart a favorable level of permeability, but ester content alone is not the final determinant - the analog with highest was discovered by a single ester-to--H amide replacement. Furthermore, the relative composition of esters and -Me amides in a series had more nuanced permeability behavior. Overall, a systematic approach to structure-permeability correlations suggests that a combinatorial-like investigation of functionality in peptidic or peptide-like compounds could better identify leads with optimal passive permeability, perhaps prior to modification of side chains.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11348715PMC
http://dx.doi.org/10.1039/d4sc02758bDOI Listing

Publication Analysis

Top Keywords

passive permeability
16
side chains
12
permeability
6
backbone constitution
4
constitution drives
4
passive
4
drives passive
4
permeability independent
4
independent side
4
chains depsipeptide
4

Similar Publications

PEGylated dendrimers for precision cancer therapy: Advances in tumor targeting, drug delivery, and clinical translation.

Biomater Adv

September 2025

Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India.

PEGylated dendrimers have emerged as highly adaptable nanocarriers for targeted cancer therapy, offering exceptional control over size, surface functionality, and drug loading. The covalent attachment of polyethylene glycol (PEG) chains to dendrimer surfaces improves biocompatibility, enhances circulation time, and minimizes immune clearance, facilitating passive tumor targeting through the enhanced permeability and retention (EPR) effect. These engineered nanosystems allow for precise encapsulation or conjugation of chemotherapeutic agents, nucleic acids, and imaging probes, with tunable release profiles.

View Article and Find Full Text PDF

Colorectal cancer (CRC) remains a major global health burden, necessitating more effective and selective therapeutic approaches. Nanocarrier-based drug delivery systems offer significant advantages by enhancing drug accumulation in tumors, reducing off-target toxicity, and overcoming resistance mechanisms. This review provides a comprehensive overview of recent advancements in nanocarriers for CRC therapy, including passive targeting the enhanced permeability and retention (EPR) effect, and active targeting strategies that exploit specific tumor markers using ligands such as antibodies, peptides, and aptamers.

View Article and Find Full Text PDF

Lipid nanocapsules (LNCs) are an emerging nanocarrier platform for cancer therapy as they can co-deliver multiple drugs, promote synergistic action, and provide targeted drug delivery. The phase inversion temperature (PIT) process is most used for LNC formulation, which has the advantage of process simplicity, thermodynamic stability, and the employment of non-toxic solvents without requiring high energy input. Surface functionalization with targeting ligands like folic acid and peptides increases tumor specificity and reduces off-target toxicity.

View Article and Find Full Text PDF

The in vitro intestinal permeability of straight- and branched-chain parabens has not been extensively investigated. Sixteen parabens were tested in the Caco-2 assay. Passive diffusion was measured using PAMPA.

View Article and Find Full Text PDF

Chemotherapy remains a cornerstone treatment for advanced prostate cancer. Nano drug delivery systems have revolutionized targeted therapy by overcoming challenges such as poor water solubility, lack of specificity, and the side effects associated with conventional drugs. However, the rapid clearance and immunogenicity of nanoparticles limit their in vivo efficacy.

View Article and Find Full Text PDF