98%
921
2 minutes
20
Background: Deleterious germline variants in and have been associated with a moderately increased risk of breast cancer. Risks for other cancers remain unclear.
Methods: Cancer associations for coding variants in and were evaluated using whole-exome sequence data from UK Biobank linked to cancer registration data (348 488 participants), and analysed both as a retrospective case-control and a prospective cohort study. Odds ratios, hazard ratios, and combined relative risks (RRs) were estimated by cancer type and gene. Separate analyses were performed for protein-truncating variants (PTVs) and rare missense variants (rMSVs; allele frequency <0.1%).
Results: PTVs in were associated with increased risks of nine cancers at p<0.001 (pancreas, oesophagus, lung, melanoma, breast, ovary, prostate, bladder, lymphoid leukaemia (LL)), and three at p<0.05 (colon, diffuse non-Hodgkin's lymphoma (DNHL), rectosigmoid junction). Carriers of rMSVs had increased risks of four cancers (p<0.05: stomach, pancreas, prostate, Hodgkin's disease (HD)). RRs were highest for breast, prostate, and any cancer where rMSVs lay in the FAT or PIK domains, and had a Combined Annotation Dependent Depletion score in the highest quintile.PTVs in were associated with three cancers at p<0.001 (breast, prostate, HD) and six at p<0.05 (oesophagus, melanoma, ovary, kidney, DNHL, myeloid leukaemia). Carriers of rMSVs had increased risks of five cancers (p<0.001: breast, prostate, LL; p<0.05: melanoma, multiple myeloma).
Conclusion: PTVs in and are associated with a wide range of cancers, with the highest RR for pancreatic cancer in PTV carriers. These findings can inform genetic counselling of carriers.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11503094 | PMC |
http://dx.doi.org/10.1136/jmg-2024-110127 | DOI Listing |
Lab Invest
September 2025
Department of Pathology and Laboratory Medicine, University of California, Irvine, CA, USA. Electronic address:
Sinonasal mucosal melanoma (SNMM) is a rare aggressive malignancy of the sinonasal tract. Due to its advanced clinical presentation and frequent late-stage diagnosis, the 5-year survival rate is less than 30%, with an even worse prognosis in patients with distant metastasis (SNMM-M). Therefore, characterizing the molecular landscape of SNMM may provide novel therapeutic targets for SNMM-M.
View Article and Find Full Text PDFMol Genet Genomics
September 2025
Institute of Genetics, Vetsuisse Faculty, University of Bern, 3012, Bern, Switzerland.
The aim of this study was to investigate three unrelated Simmental calves with atypical white coat color, identify potential genetic causes using a trio-based whole-genome sequencing approach, and assess the prevalence of the identified variants in the breed. Several inherited alleles affecting coat color, ranging from fawn to red spotted and white-headed, have been described in Simmental cattle originating from Switzerland. However, no genetic variant has yet been associated with an almost completely white coat in this breed.
View Article and Find Full Text PDFJ Bone Miner Res
September 2025
Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, United States.
Autosomal Dominant Osteopetrosis (ADO) is a rare, osteosclerotic disorder usually caused by missense variants in the CLCN7 gene, resulting in impaired osteoclastic bone resorption. Penetrance is incomplete and disease severity varies widely, even among relatives within the same family. Although ADO can cause visual loss, osteonecrosis, osteomyelitis, and bone marrow failure, the most common complication of ADO is fracture.
View Article and Find Full Text PDFJ Hum Genet
September 2025
Department of Neuromuscular Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), Tokyo, Japan.
GNE myopathy is an autosomal recessive distal myopathy resulting from biallelic pathogenic variants in the GNE gene, a key enzyme in sialic acid biosynthesis. Although most pathogenic variants are missense variants, recent advances have enabled the identification of copy number variations, deep intronic variants, and regulatory changes in the promoter region, significantly enhancing diagnostic accuracy. Progress in genetic diagnostics now allows detection of rare and complex variants.
View Article and Find Full Text PDFHum Mol Genet
September 2025
Department of Neurology, MassGeneral Institute for Neurodegenerative Disease (MIND), Massachusetts General Hospital, 114 16th Street, Charlestown, MA 02129, United States.
A de novo mutation in the transcription factor Nucleus accumbens associated protein 1 (NACC1) gene (c.892C > T p.R298W) causes a rare, severe neurodevelopmental disorder which manifests postnatally.
View Article and Find Full Text PDF