Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Heterogeneous metamaterials containing excitonic materials provide an ideal platform for strong exciton-photon coupling. In this Letter, we theoretically demonstrate four strong couplings in a heterogeneous metamaterial consisting of a TiO grating standing on a perovskite-WS-perovskite waveguide layer by tuning the structural sizes. The quasi-bound state in the continuum (qBIC) and the guided mode resonance (GMR) both strongly coupled with the excitons of both perovskite and WS under oblique incident illumination, resulting in four large Rabi splittings of 177.32, 187.53, 406.25, and 435.09 meV via a reasonable combination of oscillator strengths of perovskite and WS. Double strong coupling behaviors are also achieved when the grating period equals 222 nm with an incident light angle of 19.3°. Moreover, double ultrastrong coupling can even be realized by the GMR and qBIC respectively interacting with the exciton of WS when its oscillator strength reaches a certain value. Our work paves an effective avenue to realizing strong coupling and even ultrastrong coupling between multiple excitons and multiple optical modes.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OL.533151DOI Listing

Publication Analysis

Top Keywords

strong coupling
12
guided mode
8
heterogeneous metamaterials
8
ultrastrong coupling
8
strong
5
coupling
5
coupling double
4
double excitons
4
excitons guided
4
mode resonances
4

Similar Publications

Optical manipulation techniques have been widely applied in the biomedical field. However, the key issues limiting the efficiency of optical manipulation techniques are the weak driving force of optical scattering and the small working range of optical gradient forces. The optothermal Marangoni convection enables effective control of flow fields through optical means, and particle manipulation based on this mechanism offers advantages such as a wide working range, strong driving force, and high flexibility.

View Article and Find Full Text PDF

Magnon-phonon hybridization in ordered materials is a crucial phenomenon with significant implications for spintronics, magnonics, and quantum materials research. We present direct experimental evidence and theoretical insights into magnon-phonon coupling in Mn_{3}Ge, a kagome antiferromagnet with noncollinear spin order. Using inelastic x-ray scattering and ab initio modeling, we uncover strong hybridization between planar spin fluctuations and transverse optical phonons, resulting in a large hybridization gap of ∼2  meV.

View Article and Find Full Text PDF

Ultrafast light-driven strongly correlated antiferromagnetic insulators, such as prototypical NiO with a large Mott energy gap ≃4  eV, have recently attracted experimental attention using photons of both subgap [H. Qiu et al., Nat.

View Article and Find Full Text PDF

Giant Graviton Correlators as Defect Systems.

Phys Rev Lett

August 2025

University of Chinese Academy of Sciences, Kavli Institute for Theoretical Sciences, Beijing 100190, China.

We consider correlation functions of two maximal giant gravitons and two light 1/2-BPS (Bogomol'nyi-Prasad-Sommerfield) operators in 4D N=4 SYM (super Yang-Mills). Viewed as two-point correlators in the presence of a zero-dimensional defect, they can be completely fixed at strong coupling using analytic bootstrap techniques. We determine all infinitely such correlators for arbitrary light 1/2-BPS operators and find that the result can be repackaged into a simple generating function thanks to a hidden higher-dimensional symmetry.

View Article and Find Full Text PDF

Optomechanical and electro-optomechanical systems have emerged as one of the most promising approaches for quantum microwave-to-optical transduction to interconnect distributed quantum modalities for scaling the quantum systems. These systems use suspended structures to increase mode overlap and mitigate loss to achieve high efficiency. However, the suspended design's poor heat dissipation under strong drive limits the ultimate efficiency.

View Article and Find Full Text PDF