98%
921
2 minutes
20
There has been growing scientific interest in the research field of deep learning techniques applied to skin cancer diagnosis in the last decade. Though encouraging data have been globally reported, several discrepancies have been observed in terms of study methodology, result presentations and validation in clinical settings. The present review aimed to screen the scientific literature on the application of DL techniques to dermoscopic melanoma/nevi differential diagnosis and extrapolate those original studies adequately by reporting on a DL model, comparing them among clinicians and/or another DL architecture. The second aim was to examine those studies together according to a standard set of statistical measures, and the third was to provide dermatologists with a comprehensive explanation and definition of the most used artificial intelligence (AI) terms to better/further understand the scientific literature on this topic and, in parallel, to be updated on the newest applications in the medical dermatologic field, along with a historical perspective. After screening nearly 2000 records, a subset of 54 was selected. Comparing the 20 studies reporting on convolutional neural network (CNN)/deep convolutional neural network (DCNN) models, we have a scenario of highly performant DL algorithms, especially in terms of low false positive results, with average values of accuracy (83.99%), sensitivity (77.74%), and specificity (80.61%). Looking at the comparison with diagnoses by clinicians (13 studies), the main difference relies on the specificity values, with a +15.63% increase for the CNN/DCNN models (average specificity of 84.87%) compared to humans (average specificity of 64.24%) with a 14,85% gap in average accuracy; the sensitivity values were comparable (79.77% for DL and 79.78% for humans). To obtain higher diagnostic accuracy and feasibility in clinical practice, rather than in experimental retrospective settings, future DL models should be based on a large dataset integrating dermoscopic images with relevant clinical and anamnestic data that is prospectively tested and adequately compared with physicians.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11351129 | PMC |
http://dx.doi.org/10.3390/bioengineering11080758 | DOI Listing |
J Eval Clin Pract
September 2025
Department of Orthopedics and Traumatology, Medical Faculty, University of Health Sciences, Antalya, Turkey.
Aims And Objective: The field of medical statistics has experienced significant advancements driven by integrating innovative statistical methodologies. This study aims to conduct a comprehensive analysis to explore current trends, influential research areas, and future directions in medical statistics.
Methods: This paper maps the evolution of statistical methods used in medical research based on 4,919 relevant publications retrieved from the Web of Science.
Dermatitis
September 2025
From the Department of Dermatology, Venereology and Leprology, All India Institute of Medical Sciences (AIIMS), Bhopal, India.
Contact dermatitis (CD), which includes both allergic CD and irritant CD, is a common inflammatory condition that can pose significant diagnostic challenges. Although patch testing is the gold standard for identifying causative allergens for allergic contact dermatitis (ACD), it is time-consuming, subjective, and requires expert interpretation. Recent advancements in artificial intelligence (AI), particularly in machine learning (ML) and deep learning, have shown promise in improving the accuracy, efficiency, and accessibility of CD diagnosis and management.
View Article and Find Full Text PDFElectromagn Biol Med
September 2025
Computer Science and Business Systems, Sri Krishna College of Engineering and Technology, Coimbatore, India.
Subject-independent emotion detection using EEG (Electroencephalography) using Vibrational Mode Decomposition and deep learning is made possible by the scarcity of labelled EEG datasets encompassing a variety of emotions. Labelled EEG data collection over a wide range of emotional states from a broad and varied population is challenging and resource-intensive. As a result, models trained on small or biased datasets may fail to generalize well to unknown individuals or emotional states, resulting in lower accuracy and robustness in real-world applications.
View Article and Find Full Text PDFNan Fang Yi Ke Da Xue Xue Bao
August 2025
School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, China.
Objectives: We propose a myocardial infarction (MI) detection and localization model for improving the diagnostic accuracy for MI to provide assistance to clinical decision-making.
Methods: The proposed model was constructed based on multi-scale field residual blocks fusion modified channel attention (MSF-RB-MCA). The model utilizes lead II electrocardiogram (ECG) signals to detect and localize MI, and extracts different levels of feature information through the multi-scale field residual block.
Ren Fail
December 2025
Department of Nephrology, The Affiliated Hospital of Qingdao University, Qingdao, China.
Large language models (LLMs) represent a transformative advance in artificial intelligence, with growing potential to impact chronic kidney disease (CKD) management. CKD is a complex, highly prevalent condition requiring multifaceted care and substantial patient engagement. Recent developments in LLMs-including conversational AI, multimodal integration, and autonomous agents-offer novel opportunities to enhance patient education, streamline clinical documentation, and support decision-making across nephrology practice.
View Article and Find Full Text PDF