98%
921
2 minutes
20
Triple-negative breast cancer (TNBC) is the most aggressive and fatal subtype of breast cancer with disappointing treatment and high mortality. Tumor microenvironment (TME) plays an important role in the invasion and metastasis of TNBC through multiple complex processes. Most anti-metastatic therapies only focus on cancer cells themselves or interfering with single factors of the metastasis process, which is often related to poor outcomes. Thus, effective TNBC treatment relies on regulating multiple key metastasis-related aspects of the TME. Herein, a self-targeting Metal-Organic Frameworks (MOFs) nanoplatform (named as MTX-PEG@TPL@ZIF-8) was designed to improve treatment of TNBC through tumor microenvironment remodeling and chemotherapy potentiation. The self-targeting MOF nanoplatform is consist of ZIF-8 nanoparticles loaded triptolide (TPL) and followed by the coating with methotrexate-polyethylene glycol conjugates (MTX-PEG). Due to MTX's affinity for the overexpressed folate receptor on tumor cell surfaces, MTX-PEG@TPL@ZIF-8 enables effective accumulation and deep penetration in the tumor area by an MTX-mediated self-targeting strategy. This MOF nanoplatform could promptly release the medication after penetrating the tumor cell, due to pH-triggered degradation. Its anti-metastasis mechanism is to inhibit tumor invasion and metastasis by down-regulating the expression of Vimentin, MMP-2 and MMP-9 and increasing the expression of E-cadherin, upregulation of cleaved caspase-3 and cleaved caspase-9 protein expression promote the apoptosis of tumor cells, thereby reducing their migration. It also downregulated the expression of VEGF and CD31 protein to inhibit the generation of neovascularization. Overall, these findings suggest the self-targeting MOF nanoplatform offers new insights into the treatment of metastatic TNBC by TME remodeling and potentiating chemotherapy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijpharm.2024.124625 | DOI Listing |
BMC Cancer
September 2025
Klinik für Innere Medizin II, Universitätsklinikum Jena, Am Klinikum 1, Jena, 07747, Germany.
Acta Pharmacol Sin
September 2025
Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China.
Chemotherapeutic resistance is a significant issue in the treatment of breast cancer, which is related to pyroptosis inhibition. Increasing evidence suggests that long non-coding RNAs (lncRNAs) contribute to tumorigenesis and drug resistance. In this study we investigated the role of the lncRNA STMN1P2 in doxorubicin resistance in breast cancer, as well as its correlation with pyroptosis inhibition.
View Article and Find Full Text PDFJ Hum Genet
September 2025
Division of Integrative Genomics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.
Comprehensive genomic profiling (CGP) expands treatment options for solid tumor patients and identifies hereditary cancers. However, in Japan, confirmatory tests have been conducted in only 31.6% of patients with presumed germline pathogenic variants (GPVs) detected through tumor-only testing.
View Article and Find Full Text PDFCardiovasc Intervent Radiol
September 2025
The Department of Radiology, Wakayama Medical University, Wakayama, Japan.
Purpose: Recent advancements in medical technologies have made trans-arterial treatment of breast cancer feasible. Consequently, understanding the vascular anatomies of breast cancers and axillary lymph node metastases has become indispensable for sophisticated treatments. The aim of this study was to determine the vascular anatomy of the breast, which is crucial for trans-arterial chemoembolization in patients with breast cancer.
View Article and Find Full Text PDFNat Commun
September 2025
Department of Preventive Medicine, Keck School of Medicine, University of Southern California Norris Comprehensive Cancer Center, Los Angeles, 90033, California, USA.