98%
921
2 minutes
20
Inhibitors of NF-κB (IκBs) have been implicated as major components of the Rel/NF-κB signaling pathway, playing an important negative regulatory role in host antiviral immunity such as in the activation of interferon (IFN) in vertebrates. In the present study, the immunomodulatory effect of IκB (CgIκB2) on the expression of interferon-like protein (CgIFNLP) was evaluated in Pacific oyster (Crassostrea gigas). After poly (I:C) stimulation, the mRNA expression level of CgIκB2 in haemocytes was significantly down-regulated at 3-12 h while up-regulated at 48-72 h. The mRNA expression of CgIκB2 in haemocytes was significantly up-regulated at 3 h after rCgIFNLP stimulation. In the CgIκB2-RNAi oysters, the mRNA expression of CgIFNLP, interferon regulatory factor-8 (CgIRF8) and NF-κB subunit (CgRel), the abundance of CgIFNLP and CgIRF8 protein in haemocytes, as well as the abundance of CgRel protein in nucleus were significantly increased after poly (I:C) stimulation. Immunofluorescence assay showed that nuclear translocation of CgIRF8 and CgRel protein was promoted in CgIκB2-RNAi oysters compared with that in EGFP-RNAi group. In the CgRel-RNAi oysters, the mRNA and protein expression level of CgIFNLP significantly down-regulated after poly (I:C) stimulation. The collective results indicated that CgIκB2 plays an important role in regulating CgIFNLP expression through its effects on Rel/NF-κB and IRF signaling pathways.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.fsi.2024.109853 | DOI Listing |
Macromol Biosci
September 2025
IMEM-BRT Group, Departament d'Enginyeria Química, EEBE, Universitat Politècnica de Catalunya, Barcelona, Spain.
This study investigates a multifunctional hydrogel system integrating carboxymethyl cellulose (CMC) in a 3D-printed limonene (LIM) scaffold coated with poly(3,4-ethylenedioxythiophene): polystyrene sulfonate (PEDOT:PSS). The system allows to enhance wound healing, prevent infections, and monitor the healing progress. CMC is crosslinked with citric acid (CA) to form the hydrogel matrix (CMC-CA), while the 3D-printed limonene (LIM) scaffold is embedded within the hydrogel to provide mechanical support.
View Article and Find Full Text PDFACS Nano
September 2025
Department of Electrical and Computer Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea.
Vagus nerve stimulation (VNS) is a promising therapy for neurological and inflammatory disorders across multiple organ systems. However, conventional rigid interfaces fail to accommodate dynamic mechanical environments, leading to mechanical mismatches, tissue irritation, and unstable long-term interfaces. Although soft neural interfaces address these limitations, maintaining mechanical durability and stable electrical performance remains challenging.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
September 2025
Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P.R. China.
The stimulator of interferon genes (STING) pathway is a central target in cancer immunotherapy, but current STING agonist therapies lack precision control, leading to suboptimal therapeutic outcomes and systematic adverse effects. Herein, we engineered a dual-locked immuno-polymeric nanoplatform (IPN) with precise spatiotemporal control over the release of STING agonists to enhance cancer immunotherapy. This platform, constructed from biocompatible poly(β-amino esters) (PBAE), incorporates the STING agonist (MSA-2) covalently linked via ester bonds, which is co-assembled with a sonosensitizer.
View Article and Find Full Text PDFInt J Pharm
September 2025
Department of Chemistry, Adithya Institute of Technology, Coimbatore 641107 Tamil Nadu, India.
Chronic wounds are a foremost cause of death, affecting 6.5 million people annually. Traditional treatments, such as metal-based formulations and biomaterials, are ineffective due to their toxicity and the rising incidence of chronic wound cases, necessitating the advancement of new therapies for efficient wound healing.
View Article and Find Full Text PDFAdv Healthc Mater
September 2025
Singapore Centre for 3D Printing, Nanyang Technological University, Singapore, 639798, Singapore.
Organotypic 3D tissue models require precise electrophysiological interfaces to study function and disease. Multi-electrode arrays (MEAs) are essential for recording and stimulation, yet conventional fabrication methods are costly and time-intensive. This study demonstrates aerosol jet printing (AJP) of gold nanoparticles onto flexible polyimide substrates to produce fully gold, biocompatible MEAs for rapid customization of MEAs.
View Article and Find Full Text PDF