98%
921
2 minutes
20
Theory questions the persistence of nonreciprocal interactions in which one plant has a positive net effect on a neighbor that, in return, has a negative net impact on its benefactor - a phenomenon known as antagonistic facilitation. We develop a spatially explicit consumer-resource model for belowground plant competition between ecosystem engineers, plants able to mine resources and make them available for any other plant in the community, and exploiters. We use the model to determine in what environmental conditions antagonistic facilitation via soil-resource engineering emerges as an optimal strategy. Antagonistic facilitation emerges in stressful environments where ecosystem engineers' self-benefits from mining resources outweigh the competition with opportunistic neighbors. Among all potential causes of stress considered in the model, the key environmental parameter driving changes in the interaction between plants is the proportion of the resource that becomes readily available for plant consumption in the absence of any mining activity. Our results align with theories of primary succession and the stress gradient hypothesis. However, we find that the total root biomass and its spatial allocation through the root system, often used to measure the sign of the interaction between plants, do not predict facilitation reliably.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/nph.20053 | DOI Listing |
Biological invasions pose a significant threat to ecosystem stability by altering the taxonomic and functional diversity of native communities. It is still uncertain, however, whether multiple invasive species have varying effects on native communities, or whether their interactions in a co-invasion scenario are antagonistic or facilitative. To address this gap, this study investigated 24 sampling sites in Hong Kong, encompassing single invasion, co-invasion, and non-invaded control scenarios across the dry and wet seasons.
View Article and Find Full Text PDFPlant Biotechnol J
September 2025
Nematology Institute of Northern China, College of Plant Protection, Shenyang Agriculture University, Shenyang, China.
Soybean cyst nematode (SCN; Heterodera glycines Ichinohe) is a plant-parasitic nematode that causes substantial yield losses in soybean production. Light signalling is a critical environmental factor that influences photomorphogenesis and carbohydrate metabolism. However, its transcriptional regulation under pathogen-induced stress remains unclear.
View Article and Find Full Text PDFMicrob Ecol
August 2025
Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Key Lab of Organic-Based Fertilizers of China, Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing, 210095, C
The rhizosphere microbiome plays a pivotal role in plant health by mediating interactions between hosts, beneficial microbes, and pathogens. However, the ecological mechanisms underlying microbial consortia that suppress soil-borne diseases remain largely unexplored. In this study, we investigated how the biocontrol bacterium Bacillus velezensis SQR9 influences the assembly of the cucumber rhizosphere bacterial community in the presence of the pathogenic fungus Fusarium oxysporum f.
View Article and Find Full Text PDFViruses
August 2025
Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia.
The rabies virus (RABV) phosphoprotein (P protein) has multiple functions, including acting as the essential non-catalytic cofactor of the viral polymerase (L protein) for genome replication and transcription; the principal viral antagonist of the interferon (IFN)-mediated innate immune response; and the chaperone for the viral nucleoprotein (N protein). Although P protein is known to undergo phosphorylation by cellular kinases, the location and functions of the phosphorylation sites remains poorly defined. Here, we report the identification by mass-spectrometry (MS) of residues of P protein that are modified by phosphorylation in mammalian cells, including several novel sites.
View Article and Find Full Text PDFProc Biol Sci
August 2025
Department of Biology, Georgetown University, Washington, DC, USA.
Some selfish genetic elements drive at meiosis to achieve transmission distortion, breaking the rules of Mendelian segregation to enhance their own evolutionary success. It has been shown that enhancers of drive must act in in order to gain the selfish benefit of drive and that suppressors of drive will be selected at unlinked loci. Here, we model the evolution of an autosomal -acting gene () that causes the Y chromosome (or even 0 chromosome) to drive without driving itself, a phenomenon we call 'remote-control meiotic drive'.
View Article and Find Full Text PDF