Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

With climate change and anthropic influence on the coastal ecosystems, mangrove ecosystems are disappearing at an alarming rate. Accordingly, it becomes important to track, study, record and store the mangrove microbial community considering their ecological importance and potential for biotechnological applications. Here, we provide information on mangrove fungal community composition and diversity in mangrove ecosystems with different plant species and from various locations differing in relation to anthropic influences. We describe twelve newly assembled genomes, including four chromosomal-level genomes of fungal isolates from the mangrove ecosystems coupled with functional annotations. We envisage that these data will be of value for future studies including comparative genome analysis and large-scale temporal and/or spatial research to elucidate the potential mechanisms by which mangrove fungal communities assemble and evolve. We further anticipate that the genomes represent valuable resources for bioprospecting related to industrial or clinical uses.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11336097PMC
http://dx.doi.org/10.1038/s41597-024-03748-5DOI Listing

Publication Analysis

Top Keywords

mangrove ecosystems
12
mangrove fungal
8
mangrove
7
datasets fungal
4
fungal diversity
4
diversity pseudo-chromosomal
4
genomes
4
pseudo-chromosomal genomes
4
genomes mangrove
4
mangrove rhizosphere
4

Similar Publications

Tropical peatlands are globally significant ecosystems for carbon cycling and storage, hydrological regulation, and unique biodiversity. There is a diversity of tropical peatland types globally, but tropical peat-forming ecosystems are typically forested without the Sphagnum groundcover that is often characteristic of high-latitude peatlands. Here, we report on a unique tropical peatland situated in Belize that challenges our understanding of both tropical and extra-tropical peatlands owing to the presence of Sphagnum in the undergrowth.

View Article and Find Full Text PDF

Making Restoration Effective for Dynamic Coastal Wetlands.

Glob Chang Biol

September 2025

Elkhorn Slough National Estuarine Research Reserve, Watsonville, California, USA.

To halt and reverse the trends of ecosystem loss and degradation under global change, nations globally are promoting ecosystem restoration. Restoration is particularly crucial to coastal wetlands (including tidal marshes, mangrove forests, and tidal flats), which are among the most important ecosystems on Earth but have been severely depleted and degraded. In this review, we explore the question of how to make restoration more effective for coastal wetlands in light of the often-overlooked dynamic nature of these transitional ecosystems between land and ocean.

View Article and Find Full Text PDF

Loss of oxygen (O) from the world's oceans to physiologically-critical levels ("hypoxia") is an important, yet understudied stressor for coral reefs. However, extreme reef-neighbouring ecosystems such as mangrove lagoons that are routinely subjected to frequent low-pO exposure (i.e.

View Article and Find Full Text PDF

Subtle biogeochemical consequences of biodegradable and conventional microplastics in estuarine blue carbon systems.

J Hazard Mater

August 2025

Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China; School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong, China. Electronic address: wx.wang@cityu

Blue carbon ecosystems act as critical sinks for microplastics (MPs), yet field-based evidence of their biogeochemical consequences remains scarce. In this study, we conducted in situ exposures of estuarine mangroves to environmentally relevant concentrations of polypropylene (PP) and polylactic acid (PLA) MPs for 30 and 100 days. Metagenomic analyses revealed stable microbial community composition across treatments.

View Article and Find Full Text PDF

The interaction of mangrove trees with endophytic microorganisms contributes to the successful establishment of these plants in the challenging intertidal environment. The red mangrove, L. (Rhizophoraceae), is one of the dominant species in mangrove ecosystems and is characterized by the provision of several ecologically relevant services.

View Article and Find Full Text PDF