98%
921
2 minutes
20
Background: Constipation is one of the most common gastrointestinal disorders afflicting the population, with recent observational studies implicating dysfunction of the gut microbiota in constipation. Despite observational studies indicating a relationship, a clear causality remains unclear. This study aims to use two-sample Mendelian randomization (MR) to establish a clearer causal relationship between the two.
Methods: A two-sample Mendelian randomization (MR) study was performed using the gut microbiota summary Genome-Wide Association Studies (GWAS) statistics from MiBioGen consortium (n = 13,266) and constipation GWAS summary statistics from the IEU OpenGWAS database. The causality between gut microbiota and constipation is primarily analyzed using the inverse-variance weighted (IVW) method and reinforced by an additional four methods, including MR-Egger, Weighted Median, Simple Mode, and Weighted Mode. Finally, funnel plot, heterogeneity test, horizontal pleiotropy test, and leave-one-out test were used to evaluate the reliability of MR results.
Results: IVW estimates suggested that the bacterial species Anaerotruncus, Butyricimonas, and Hungatella were causally associated with constipation. The odds ratio (OR) values of Anaerotruncus, Butyricimonas, and Hungatella were 1.08 (95% CI = 1.02-1.13; P = 0.007), 1.07 (95% CI = 1.01-1.13; P = 0.015), 1.03 (95% CI = 1.00-1.06; P = 0.037) respectively. Meanwhile, Ruminiclostridium 9 and Intestinibacter have been shown to be associated with a reduced risk of constipation. The OR of Ruminiclostridium 9 = 0.75(95% CI = 0.73-0.78, P < 0.001 and Intestinibacter of OR = 0.89 (95% CI = 0.86-0.93, P < 0.001). Furthermore, validation by funnel plot, heterogeneity test, and horizontal pleiotropy test showed that MR results were reliable.
Conclusion: This is the first Mendelian randomization study to explore the causalities between specific gut microbiota taxa and constipation, and as such may be useful in providing insights into the unclear pathology of constipation which can in turn aid in the search for prevention and treatment.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11331768 | PMC |
http://dx.doi.org/10.1186/s12876-024-03306-8 | DOI Listing |
Alzheimers Res Ther
September 2025
Department of Neurology, Saarland University, Kirrberger Straße, 66421, Homburg/Saar, Germany.
Background: Alzheimer's disease (AD) patients and animal models exhibit an altered gut microbiome that is associated with pathological changes in the brain. Intestinal miRNA enters bacteria and regulates bacterial metabolism and proliferation. This study aimed to investigate whether the manipulation of miRNA could alter the gut microbiome and AD pathologies.
View Article and Find Full Text PDFBMC Vet Res
September 2025
Department of Poultry Production, Faculty of Agriculture, Fayoum University, Fayoum, 63514, Egypt.
This study investigated the impact of dietary zeolite supplementation on growth, cecal microbiota and digesta viscosity, digestive enzymes, carcass traits, blood constituents, and antioxidant parameters of broilers. A completely randomized design was used with 240 one-day-old broiler chicks randomly assigned to three dietary treatments (0%, 1.5%, and 3% zeolite as a feed additive) with four replicates of 20 chicks each.
View Article and Find Full Text PDFJ Mol Neurosci
September 2025
Department of Physiology, School of Medicine, Dokuz Eylul University, Izmir, Turkey.
The ketogenic diet (KD), a high-fat, low-carbohydrate regimen, has been shown to exert neuroprotective effects in various neurological models. This study explored how KD-alone or combined with antibiotic-induced gut microbiota depletion-affects cognition and neuroinflammation in aging. Thirty-two male rats (22 months old) were assigned to four groups (n = 8): control diet (CD), ketogenic diet (KD), antibiotics with control diet (AB), and antibiotics with KD (KDAB).
View Article and Find Full Text PDFEnviron Monit Assess
September 2025
School of Chemical Engineering, Universiti Sains Malaysia, Engineering Campus, 14300, Nibong Tebal, Penang, Malaysia.
Ciprofloxacin (CIP), a widely used fluoroquinolone antibiotic, has become a significant contaminant in aquatic environments due to its extensive use and incomplete metabolism. This review comprehensively analyses CIP pollution, including its sources, environmental and health impacts, and removal strategies. Chemical methods such as advanced oxidation processes and physical techniques like adsorption are evaluated for their efficiency in CIP removal.
View Article and Find Full Text PDFNat Microbiol
September 2025
Joan and Sanford I. Weill Department of Medicine, Gastroenterology and Hepatology Division, Weill Cornell Medicine, New York, NY, USA.
Microbial influence on cancer development and therapeutic response is a growing area of cancer research. Although it is known that microorganisms can colonize certain tissues and contribute to tumour initiation, the use of deep sequencing technologies and computational pipelines has led to reports of multi-kingdom microbial communities in a growing list of cancer types. This has prompted discussions on the role and scope of microbial presence in cancer, while raising the possibility of microbiome-based diagnostic, prognostic and therapeutic tools.
View Article and Find Full Text PDF