98%
921
2 minutes
20
The pulsed optically pumped (POP) atomic clock has demonstrated unexpected performance in terms of frequency stability and drift. However, it remains a huge challenge to make this type of atomic clock more compact. Herein, we report the design of a miniaturized physics package, which is equipped with a magnetron microwave cavity holding a vapor cell of 1.3 cm internal diameter. The Zeeman transition spectrum reveals that the microwave cavity resonates in TE011-like mode. Based on a low-noise testbed, we also quantitatively analyze the relaxation time, linewidth, and noise sources of the resulting POP atomic clock. The population and coherence relaxation time are measured to be 3.16(0.16) and 2.97(0.03) ms under the temperature of 333 K, which are compatible well with the theoretical calculation. The Ramsey signal shows a contrast of 35% and a linewidth of 192 Hz. The total volume of the physics package is about 44 cm3, including a layer of magnetic shielding. The short-term frequency stability is measured to be 4.8 × 10-13τ-1/2 (where τ is the averaging time), which is mainly limited by the relative intensity noise of the laser system.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/5.0219868 | DOI Listing |
Rev Sci Instrum
September 2025
National Time Service Center, Chinese Academy of Sciences, Xi'an 710600, China.
We report the design and in-orbit demonstration of a compact optical system for a 87Sr optical lattice clock aboard the Chinese Space Station. This system adopts a compact and robust vertically stacked architecture with a total volume of 0.11 m3 and a mass of 53.
View Article and Find Full Text PDFJ Chem Theory Comput
September 2025
Instituto de Biocomputación y Física de Sistemas Complejos, Zaragoza 50018, Spain.
All-atom, force field-based molecular dynamics simulations are essential tools in computational chemistry, enabling the prediction and analysis of biomolecular systems with atomic-level resolution. However, as system sizes and simulation time scales increase, so does the associated computational cost. To extend simulated time using the same resources, a common strategy is to constrain the fastest degrees of freedom, such as bond lengths, allowing for larger integration time steps without compromising accuracy.
View Article and Find Full Text PDFPhys Chem Chem Phys
August 2025
School of Engineering, Mackenzie Presbyterian University, São Paulo 01302-907, Brazil.
Chemical doping plays a pivotal role in tailoring the charge transport properties of two-dimensional transition metal dichalcogenides for nanoelectronic and optoelectronic applications. In this study, we examine the influence of chlorine doping on the local electronic structure and ultrafast electron dynamics of chemical vapor deposition (CVD)-grown monolayer MoS. Raman and photoluminescence (PL) spectroscopy, supported by X-ray photoelectron spectroscopy (XPS), reveal spectral shifts and core-level modifications consistent with n-type doping induced by Cl atoms.
View Article and Find Full Text PDFPhys Rev Lett
August 2025
National Institute of Standards and Technology, 325 Broadway, Boulder, Colorado 80305, USA.
Controlling the Stark perturbation from ambient thermal radiation is key to advancing the performance of many atomic frequency standards, including state-of-the-art optical lattice clocks (OLCs). We demonstrate a cryogenic OLC that utilizes a dynamically actuated radiation shield to control the perturbation at 1.7×10^{-20} fractional frequency, a factor of ∼40 beyond the best OLC to date.
View Article and Find Full Text PDFMicrosyst Nanoeng
August 2025
State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, State Industry-Education Integration Center for Medical Innovations at Xi'an Jiaotong University, Xi'an Jiaotong University (Yantai) Research Institut
The development of micro-electro-mechanical system (MEMS) alkali metal vapor cells offers the potential for the batch fabrication of micro-quantum sensors for atomic clocks, atomic magnetometers and atomic gyroscopes. The sealing of MEMS vapor cells is traditionally achieved by anodic bonding. However, high-temperature and high direct-voltage conditions during anodic bonding adversely affect the performance of the vapor cell.
View Article and Find Full Text PDF