Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

All-atom, force field-based molecular dynamics simulations are essential tools in computational chemistry, enabling the prediction and analysis of biomolecular systems with atomic-level resolution. However, as system sizes and simulation time scales increase, so does the associated computational cost. To extend simulated time using the same resources, a common strategy is to constrain the fastest degrees of freedom, such as bond lengths, allowing for larger integration time steps without compromising accuracy. The de facto state-of-the-art algorithms for this purpose─SHAKE, LINCS, and P-LINCS─are integrated into most molecular dynamics packages and widely adopted across the field. Despite their impact, these methods exhibit limitations: all converge slowly when high numerical accuracy is required, and the LINCS and P-LINCS algorithms cannot handle general angular constraints, limiting further increases in time step. In this article, we introduce ILVES, a family of parallel algorithms that converge so rapidly that it is now practical to solve bond length and associated angular constraint equations as accurately as the hardware will allow. We have integrated ILVES into Gromacs, and our analysis demonstrates that it is superior to the state-of-the-art when constraining bond lengths. Due to its better convergence properties, we also show that if the time step is increased up to 3.5 fs by enforcing angular constraints, ILVES enables a 1.65× increase in simulated time using the same computational resources and wall-clock time, an outcome unattainable with current methods. This advance can significantly reduce the computational cost of most all-atom molecular dynamics simulations while improving their accuracy and extending access to larger systems and longer time scales.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jctc.5c01376DOI Listing

Publication Analysis

Top Keywords

molecular dynamics
16
bond length
8
dynamics simulations
8
time
8
time scales
8
computational cost
8
simulated time
8
bond lengths
8
angular constraints
8
time step
8

Similar Publications

Dissecting the Molecular Determinants of α-synuclein Phase Separation and Condensate Aging: The Pivotal Role of β-Sheet-Rich Motifs.

Adv Sci (Weinh)

September 2025

Department of Physics, State Key Laboratory of Surface Physics, and Key Laboratory for Computational Physical Science (Ministry of Education), Fudan University, 2005 Songhu Road, Yangpu District, Shanghai, 200433, China.

Emerging evidence indicates that liquid-liquid phase separation of α-synuclein occurs during the nucleation step of its aggregation, a pivotal step in the onset of Parkinson's disease. Elucidating the molecular determinants governing this process is essential for understanding the pathological mechanisms of diseases and developing therapeutic strategies that target early-stage aggregation. While previous studies have identified residues critical for α-synuclein amyloid formation, the key residues and molecular drivers of its phase separation remain largely unexplored.

View Article and Find Full Text PDF

Functional PET (fPET) identifies stimulation-specific changes of physiological processes, individual molecular connectivity and group-level molecular covariance. Since there is currently no consistent analysis approach available for these techniques, we present a toolbox for unified fPET assessment. The toolbox supports analysis of data obtained with a variety of radiotracers, scanners, experimental protocols, cognitive tasks and species.

View Article and Find Full Text PDF

Wings apart-like protein (WAPL) has emerged as a key player in maintaining genome integrity through its regulation of cohesin dynamics, which govern chromatin architecture and gene expression. WAPL mainly acts as a cohesin release factor and ensures proper chromosomal segregation during mitosis by promoting sister chromatid resolution. Owing to its prominent role in cell biology, WAPL dysregulation can cause genomic instability and disrupt chromosomal cohesion, leading to diseases such as cancer.

View Article and Find Full Text PDF

The Mediterranean Basin, a hotspot for tomato production, is one of the most vulnerable areas to climate change, where rising temperatures and increasing soil and water salinization represent major threats to agricultural sustainability. Thus, to understand the molecular mechanisms behind plant responses to this stress combination, an RNA-Seq analysis was conducted on roots and shoots of tomato plants exposed to salt (100 mM NaCl) and/or heat (42°C, 4 h each day) stress for 21 days. The analysis identified over 8000 differentially expressed genes (DEGs) under combined stress conditions, with 1716 DEGs in roots and 2665 in shoots being exclusively modulated in response to this specific stress condition.

View Article and Find Full Text PDF

We report an anomalous temperature-induced transition in thermal conductivity in the germanene monolayer around a critical temperature = 350 K. Equilibrium molecular dynamics simulations reveal a transition from ∼ scaling below the to ∼ above, contrasting with conventional ∼ behavior. This anomalous scaling correlates with the long-scale characteristic timescale obtained from double exponential fitting of the heat current autocorrelation function.

View Article and Find Full Text PDF