98%
921
2 minutes
20
In the underdoped n-type cuprate NdCeCuO, long-range antiferromagnetic order reconstructs the Fermi surface, resulting in a putative antiferromagnetic metal with small Fermi pockets. Using angle-resolved photoemission spectroscopy, we observe an anomalous energy gap, an order of magnitude smaller than the antiferromagnetic gap, in a wide portion of the underdoped regime and smoothly connecting to the superconducting gap at optimal doping. After considering all the known ordering tendencies in tandem with the phase diagram, we hypothesize that the normal-state gap in the underdoped n-type cuprates originates from Cooper pairing. The high temperature scale of the normal-state gap raises the prospect of engineering higher transition temperatures in the n-type cuprates comparable to those of the p-type cuprates.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1126/science.adk4792 | DOI Listing |
J Phys Condens Matter
September 2025
Physics and Astronomy, UVic, 3800 Finnerty Road, Victoria, British Columbia, V8P 5C2, CANADA.
We report measurements of the normal-state and superconducting properties of thin-film NbTiN usingLi-detected nuclear magnetic resonance (-NMR). In these experiments, radioactiveLiprobes were implanted 21 nm below the surface of a NbTiN(91 nm) film in NbTiN/(91 nm)/AlN(4 nm)/Nb and its NMR response recorded (viaLi's-emissions) between 4.6 K and and 270 K in a 4.
View Article and Find Full Text PDFCommun Mater
October 2024
PSI Center for Neutron and Muon Sciences CNM, 5232 Villigen PSI, Switzerland.
The two-dimensional kagome lattice is an experimental playground for novel physical phenomena, from frustrated magnetism and topological matter to chiral charge order and unconventional superconductivity. A newly identified kagome superconductor, TaVSi has recently gained attention for possessing a record high critical temperature, = 7.5 K for kagome metals at ambient pressure.
View Article and Find Full Text PDFScience
August 2024
Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA.
In the underdoped n-type cuprate NdCeCuO, long-range antiferromagnetic order reconstructs the Fermi surface, resulting in a putative antiferromagnetic metal with small Fermi pockets. Using angle-resolved photoemission spectroscopy, we observe an anomalous energy gap, an order of magnitude smaller than the antiferromagnetic gap, in a wide portion of the underdoped regime and smoothly connecting to the superconducting gap at optimal doping. After considering all the known ordering tendencies in tandem with the phase diagram, we hypothesize that the normal-state gap in the underdoped n-type cuprates originates from Cooper pairing.
View Article and Find Full Text PDFNat Commun
May 2024
Institute for Chemical Research, Kyoto University, Uji, Kyoto, 611-0011, Japan.
The critical current in a superconductor (SC) determines the performance of many SC devices, including SC diodes which have attracted recent attention. Hitherto, studies of SC diodes are limited in the DC-field measurements, and their performance under a high-frequency current remains unexplored. Here, we conduct the first investigation on the interaction between the DC and terahertz (THz) current in a SC artificial superlattice.
View Article and Find Full Text PDF