Topological superconductors are one of the intriguing material groups from the viewpoint of not only condensed matter physics but also industrial applications such as quantum computers based on Majorana fermion. For real applications, developments of thin-film topological superconductors are highly desirable. Bi/Ni bilayer is a possible candidate for thin-film chiral superconductors where the time-reversal symmetry is broken.
View Article and Find Full Text PDFThe transition from planar to three-dimensional (3D) magnetic nanostructures represents a significant advancement in both fundamental research and practical applications, offering vast potential for next-generation technologies like ultrahigh-density storage, memory, logic, and neuromorphic computing. Despite being a relatively new field, the emergence of 3D nanomagnetism presents numerous opportunities for innovation, prompting the creation of a comprehensive roadmap by leading international researchers. This roadmap aims to facilitate collaboration and interdisciplinary dialogue to address challenges in materials science, physics, engineering, and computing.
View Article and Find Full Text PDFAntiferromagnetic magnons possess a distinctive feature absent in their ferromagnetic counterparts: the presence of two distinct handedness modes, the right-handed (RH) and left-handed (LH) precession modes. The magnon handedness determines the sign of spin polarization carried by the propagating magnon, which is indispensable for harnessing the diverse functionalities in magnonic devices, such as data encoding, magnon polarization-based logic systems, and quantum applications involving magnons. However, the control of coherently propagating magnon handedness in antiferromagnets has remained elusive.
View Article and Find Full Text PDFThe critical current in a superconductor (SC) determines the performance of many SC devices, including SC diodes which have attracted recent attention. Hitherto, studies of SC diodes are limited in the DC-field measurements, and their performance under a high-frequency current remains unexplored. Here, we conduct the first investigation on the interaction between the DC and terahertz (THz) current in a SC artificial superlattice.
View Article and Find Full Text PDFJ Phys Condens Matter
June 2024
Nano- and microstructures based on ferrimagnets can demonstrate high efficiency and dynamics of current-induced magnetization switching combined with high stability of spin textures such as bubble domains and skyrmions, which are of practical importance for the development of spintronics and spin-orbitronics. This set of features is usually associated with magnetic momentum or angular momentum compensation states. Here, we experimentally show that the compensation state can be realized locally using nonuniform Joule heating.
View Article and Find Full Text PDFThe superconducting diode effect (SDE), which causes a superconducting state in one direction and a normal-conducting state in another, has significant potential for developing ultralow power consumption circuits and non-volatile memory. However, the practical control of the SDE necessities the precise tuning of current, temperature, magnetic field, or magnetism. Therefore, the mechanisms of the SDE must be understood to develop novel materials and devices capable of realizing the SDE under more controlled and robust conditions.
View Article and Find Full Text PDFAdv Sci (Weinh)
April 2023
Spin current, converted from charge current via spin Hall or Rashba effects, can transfer its angular momentum to local moments in a ferromagnetic layer. In this regard, the high charge-to-spin conversion efficiency is required for magnetization manipulation for developing future memory or logic devices including magnetic random-access memory. Here, the bulk Rashba-type charge-to-spin conversion is demonstrated in an artificial superlattice without centrosymmetry.
View Article and Find Full Text PDFNat Nanotechnol
August 2022
The diode effect is fundamental to electronic devices and is widely used in rectifiers and a.c.-d.
View Article and Find Full Text PDFUnderstanding the nature of recently discovered spin-orbital induced phenomena and a definition of a general approach for "ferromagnet/heavy-metal" layered systems to enhance and manipulate spin-orbit coupling, spin-orbit torque, and the Dzyaloshinskii-Moriya interaction (DMI) assisted by atomic-scale interface engineering are essential for developing spintronics and spin-orbitronics. Here, we exploit X-ray magnetic circular dichroism (XMCD) spectroscopy at the -edges of 5d and 4d non-magnetic heavy metals (W and Ru, respectively) in ultrathin Ru/Co/W/Ru films to determine their induced magnetic moments due to the proximity to the ferromagnetic layer of Co. The deduced orbital and spin magnetic moments agree well with the theoretically predicted values, highlighting the drastic effect of constituting layers on the system's magnetic properties and the strong interfacial DMI in Ru/Co/W/Ru films.
View Article and Find Full Text PDFWe have developed a method to obtain wideband magnetic polarization selective spectra of magnetic thin films by using circularly polarized microwaves. The combination of an over-coupled crossed microstrip resonator and a hybrid coupler enables broadband and accurate control of circularly polarized microwaves. The performance of the present method was demonstrated with an yttrium iron garnet thin film, and we detected the magnetic polarization dependence of a Kittel mode and a perpendicular standing spin wave mode in the range of 3-20 GHz.
View Article and Find Full Text PDFFerrimagnets composed of multiple and antiferromagnetically coupled magnetic elements have attracted much attention recently as a material platform for spintronics. They offer the combined advantages of both ferromagnets and antiferromagnets, namely the easy control and detection of their net magnetization by an external field, antiferromagnetic-like dynamics faster than ferromagnetic dynamics and the potential for high-density devices. This Review summarizes recent progress in ferrimagnetic spintronics, with particular attention to the most-promising functionalities of ferrimagnets, which include their spin transport, spin texture dynamics and all-optical switching.
View Article and Find Full Text PDFNonlinear optical and electrical effects associated with a lack of spatial inversion symmetry allow direction-selective propagation and transport of quantum particles, such as photons and electrons. The most common example of such nonreciprocal phenomena is a semiconductor diode with a p-n junction, with a low resistance in one direction and a high resistance in the other. Although the diode effect forms the basis of numerous electronic components, such as rectifiers, alternating-direct-current converters and photodetectors, it introduces an inevitable energy loss due to the finite resistance.
View Article and Find Full Text PDFThe nonreciprocity of propagating spin waves, i.e., the difference in amplitude and/or frequency depending on the propagation direction, is essential for the realization of spin wave-based logic circuits.
View Article and Find Full Text PDFSymmetry breaking is a fundamental concept that prevails in many branches of physics. In magnetic materials, broken inversion symmetry induces the Dzyaloshinskii-Moriya interaction (DMI), which results in fascinating physical behaviours with the potential for application in future spintronic devices. Here, we report the observation of a bulk DMI in GdFeCo amorphous ferrimagnets.
View Article and Find Full Text PDFWe investigate the Gilbert damping parameter α for rare earth (RE)-transition metal (TM) ferrimagnets over a wide temperature range. Extracted from the field-driven magnetic domain-wall mobility, α was as low as the order of 10^{-3} and was almost constant across the angular momentum compensation temperature T_{A}, starkly contrasting previous predictions that α should diverge at T_{A} due to a vanishing total angular momentum. Thus, magnetic damping of RE-TM ferrimagnets is not related to the total angular momentum but is dominated by electron scattering at the Fermi level where the TM has a dominant damping role.
View Article and Find Full Text PDFNat Nanotechnol
March 2019
In the presence of a magnetic field, the flow of charged particles in a conductor is deflected from the direction of the applied force, which gives rise to the ordinary Hall effect. Analogously, moving skyrmions with non-zero topological charges and finite fictitious magnetic fields exhibit the skyrmion Hall effect, which is detrimental for applications such as skyrmion racetrack memory. It was predicted that the skyrmion Hall effect vanishes for antiferromagnetic skyrmions because their fictitious magnetic field, proportional to net spin density, is zero.
View Article and Find Full Text PDFNano Lett
January 2019
Magnetization dynamics driven by an electric field could provide long-term benefits to information technologies because of its ultralow power consumption. Meanwhile, the Dzyaloshinskii-Moriya interaction in interfacially asymmetric multilayers consisting of ferromagnetic and heavy-metal layers can stabilize topological spin textures, such as chiral domain walls, skyrmions, and skyrmion bubbles. These topological spin textures can be controlled by an electric field and hold promise for building advanced spintronic devices.
View Article and Find Full Text PDFSilicified ostracods were recovered from Cisuralian micritic limestones of the Ryozensan Limestone Formation from the southwestern part of Ryozensan Mountain, Taga City located in Shiga Prefecture, Central Japan. Twenty-seven species belonging to 19 genera were obtained, of which six species are new and are described here: Bairdia tagaensis Tanaka sp. nov.
View Article and Find Full Text PDFIn this Letter, we show the demonstration of a sequential antiferromagnetic memory operation with a spin-orbit-torque write, by the spin Hall effect, and a resistive read in the CoGd synthetic antiferromagnetic bits, in which we reveal the distinct differences in the spin-orbit-torque and field-induced switching mechanisms of the antiferromagnetic moment, or the Néel vector. In addition to the comprehensive spin torque memory operation, our thorough investigations also highlight the high immunity to a field disturbance as well as a memristive behavior of the antiferromagnetic bits.
View Article and Find Full Text PDFFor a long time, there were no efficient ways of controlling antiferromagnets. Quite a strong magnetic field was required to manipulate the magnetic moments because of a high molecular field and a small magnetic susceptibility. It was also difficult to detect the orientation of the magnetic moments since the net magnetic moment is effectively zero.
View Article and Find Full Text PDFChiral spin textures of a ferromagnetic layer in contact to a heavy non-magnetic metal, such as Néel-type domain walls and skyrmions, have been studied intensively because of their potential for future nanomagnetic devices. The Dyzaloshinskii-Moriya interaction (DMI) is an essential phenomenon for the formation of such chiral spin textures. In spite of recent theoretical progress aiming at understanding the microscopic origin of the DMI, an experimental investigation unravelling the physics at stake is still required.
View Article and Find Full Text PDFPhys Rev Lett
December 2017
Spin interaction in antiferromagnetic materials is of central interest in the recently emerging antiferromagnetic spintronics. In this Letter, we explore the spin current interaction in antiferromagnetic FeMn by the spin pumping effect. Exchange biased FeNi/FeMn films, in which the Néel vector can be presumably controlled via the exchange spring effect, are employed to investigate the damping enhancement depending on the relative orientation between the Néel vector and the polarization of the pumped spin current.
View Article and Find Full Text PDF