Ultrasensitive optical fiber SPR sensor enhanced by Au-NPs-film modified with functionalized CQDs for label-free detecting cobalt (II) ion.

Anal Chim Acta

National Engineering Research Center of Fiber Optic Sensing Technology and Networks, Wuhan University of Technology, Wuhan, 430070, China. Electronic address:

Published: September 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: Cobalt, an essential trace element, is vital for maintaining human nervous system function, aiding in DNA synthesis, and contributing to red blood cell production. It is helpful for disease diagnosis and treatment plan evaluation by precisely monitoring its concentration changes in the human body. Despite extensive efforts made, due to its ultra-low concentration, the current limit of detection (LOD) as reported is still inadequate and cannot be satisfied with the precise clinical applications. Therefore, it is crucial to develop novel label-free sensors with high sensitivity and excellent selectivity for detecting trace amounts of Co.

Results: Here, an ultrasensitive optical fiber SPR sensor was designed and fabricated for label-free detection of Co with ultra-low concentration. It is achieved by modifying the carboxyl-functionalized CQDs on the AuNPs/Au film-coated hetero-core fiber, which can specifically capture the Co, leading to changes in the fiber's surface refractive index (RI) and subsequent SPR wavelength shifts in the transmission spectrum. Both the Au film and AuNPs on the fiber are modified with CQDs, leveraging their large surface area to enhance the number of active sites and probes. The sensor exhibits an ultra-high sensitivity of approximately 6.67 × 10 nm/M, and the LOD is obtained as low as 5.36 × 10 M which is several orders of magnitude lower compared to other conventional methods. It is also experimentally demonstrated that the sensor possesses excellent specificity, stability, and repeatability, which may be adapted for detecting real clinical samples.

Significance: The CQDs-functionalized optical fiber SPR sensor exhibits substantial potential for precisely detecting Co of trace amounts, which is especially vital for scarce clinical samples. Additionally, the sensing platform with sample sensor fabrication and measurement configuration introduces a novel, highly sensitive approach to biochemical analysis, particularly adapting for applications involving the detection of trace targets, which could also be employed to detect various biochemical targets by facile modification of CQDs with specific groups or biomolecules.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.aca.2024.343030DOI Listing

Publication Analysis

Top Keywords

optical fiber
12
fiber spr
12
spr sensor
12
ultrasensitive optical
8
ultra-low concentration
8
detecting trace
8
trace amounts
8
sensor exhibits
8
sensor
6
fiber
5

Similar Publications

Long-Lived Charge-Transfer State and Interfacial Lock in Double-Cable Conjugated Polymers Enable Efficient and Stable Organic Solar Cells.

Angew Chem Int Ed Engl

September 2025

Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, P.R. China.

The donor/acceptor (D/A) interfaces in bulk heterojunction (BHJ) organic solar cells (OSCs) critically govern exciton dissociation and molecular diffusion, determining both efficiency and stability. Herein, we design a double-cable conjugated polymer, SC-1F, to insert into a physically-blended D/A system to optimize the interface. We have found that SC-1F spontaneously segregates to the interface through favorable miscibility and heterogeneous nucleation with the acceptor.

View Article and Find Full Text PDF

Background: To evaluate the ganglion cell complex thickness in patients taking oral hydroxychloroquine.

Methods: In this hospital-based, cross-sectional, non-interventional, comparative study, 87 eyes of 87 patients taking hydroxychloroquine were recruited. All the patients underwent complete ophthalmological evaluation along with dilated fundus examination.

View Article and Find Full Text PDF

Objective: Previous studies of nerve distribution in the orofacial complex have focused primarily on the anatomic courses of nerve fibers and have rarely addressed the density of nerve distribution. The nerve distribution in the mandible was described in only one report which showed an increase in nerve distribution density moving from the alveolar crest toward the inferior alveolar nerve. However, no previous reports have focused on the nerve distribution density in the maxilla.

View Article and Find Full Text PDF

Novel Grm6 Variant in a no b-wave (nob) Mouse Model: Phenotype Characterization and Gene Therapy.

Invest Ophthalmol Vis Sci

September 2025

Department of Ophthalmology, Edward S. Harkness Eye Institute, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, Columbia University, New York, New York, United States.

Purpose: To characterize a no b-wave (nob) mouse model of congenital stationary night blindness (CSNB) caused by a Grm6 variant that disrupts photoreceptor-to-bipolar cell signaling. Additionally, we aim to evaluate the efficacy of gene therapy in restoring visual function.

Methods: The nob mouse was generated through selective breeding to regenerate the nob phenotype.

View Article and Find Full Text PDF

Preparation, Characterization, and Self-Assembly of P3HT-Based Janus Fibers via a Crystallization-Driven Self-Assembly Process.

ACS Macro Lett

September 2025

State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China.

Poly(3-hexylthiophene) (P3HT)-based complex topological copolymers have attracted a great deal of attention for their unique electrical and optical properties. In this contribution, the P3HT-based Janus fibers with controlled lengths were innovatively prepared by sequential crystallization-driven self-assembly (CDSA) of poly(--butylstyrene)--polyisoprene--poly(3-hexylthiophene) (PBS--PI--P3HT) triblock copolymer, cross-linking of the interlayer PI region, and dissociation of fibers in good solvent. The comprehensive characterizations showed that the PBS/P3HT Janus fibers have nearly half the width of PBS--PI--P3HT fibers and fiber lengths close to or slightly shorter than those of PBS--PI--P3HT fibers, indicating that the Janus fibers with adjustable lengths could be prepared in a large window range.

View Article and Find Full Text PDF