Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Ferroptosis has been observed to play an important role during erythrocyte differentiation (ED). However, the biological gene markers and ferroptosis mechanisms in ED remain unknown. We downloaded the datasets of ED in human umbilical cord blood-derived CD34 cells from the Gene Expression Omnibus database. Using median differentiation time, the sample was categorized into long and short groups. The differentially expressed ferroptosis-related genes (DE-FRGs) were screened using differential expression analysis. The enrichment analyses and a protein-protein interaction (PPI) network were conducted. To predict the ED stage, a logistic regression model was constructed using the least absolute shrinkage and selection operator (LASSO). Overall, 22 DE-FRGs were identified. Ferroptosis-related pathways were enriched using Gene Ontology and the Kyoto Encyclopedia of Genes and Genomes. Gene Set Enrichment Analysis and Gene Set Variation Analysis revealed the primary involvement of DE-FRGs in JAK-STAT, MAPK, PI3K-AKT-mTORC1, WNT, and NOTCH signaling pathways. Ten-hub DE-FRGs were obtained using PPI analysis. Furthermore, we constructed mRNA-microRNA (miRNA) and mRNA-transcription factor networks. Immune cell infiltration levels differed significantly during ED. LASSO regression analysis established a signature using six DE-FRGs ( and ) related to the ED stage. Bioinformatic analyses identified ferroptosis-associated genes during ED, which were further validated. Overall, we identified ferroptosis-related genes to predict their correlations in ED. Exploring the underlying mechanisms of ferroptosis may help us better understand pathophysiological changes in ED and provide new evidence for clinical transformation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11319168PMC
http://dx.doi.org/10.3389/fgene.2024.1365232DOI Listing

Publication Analysis

Top Keywords

erythrocyte differentiation
8
umbilical cord
8
cord blood-derived
8
blood-derived cd34
8
ferroptosis-related genes
8
identified ferroptosis-related
8
gene set
8
analysis
6
gene
5
de-frgs
5

Similar Publications

Erythropoiesis, i.e., process of red blood cell (RBC) production, is highly dependent on iron, with 60-70% of the total body iron incorporated into hemoglobin.

View Article and Find Full Text PDF

Congenital dyserythropoietic anemia type III (CDA III) is an extremely rare inherited disorder characterized by ineffective erythropoiesis, multinucleated erythroblasts in the bone marrow, and variable clinical gravity. We report the case of a 6-year-old boy, presenting with abdominal distension, failure to thrive, dark urine, intermittent itching, and recurrent infections. Physical examination revealed pallor, hepatomegaly, and splenomegaly.

View Article and Find Full Text PDF

Anemia and iron deficiency (ID) are common and significant complications in kidney transplant recipients (KTRs) that can affect their health-related quality of life (HRQoL) and outcomes. Current anemia guidelines equate the post-transplant situation with the anemia associated with chronic kidney disease (CKD) in non-transplanted persons, not acknowledging relevant differences ranging from pathophysiology to clinical manifestation. Nephrologists caring for these patients tend to pay less attention to post-transplant anemia (PTA) and ID than in non-transplanted persons with CKD.

View Article and Find Full Text PDF

Background: Following SARS-CoV-2 infection, ~10-35% of COVID-19 patients experience long COVID (LC), in which debilitating symptoms persist for at least three months. Elucidating biologic underpinnings of LC could identify therapeutic opportunities.

Methods: We utilized machine learning methods on biologic analytes provided over 12-months after hospital discharge from >500 COVID-19 patients in the IMPACC cohort to identify a multi-omics "recovery factor", trained on patient-reported physical function survey scores.

View Article and Find Full Text PDF

Vitamins, as essential m icronutrients, are vital for numerous cellular functions and play a key role in maintaining hematological parameter s during pregnancy, including erythropoiesis and processes affecting iron status. Iron-Deficient Gestational Anemia (IDGA), the most common clinicopathological condition in obstetrics and highly prevalent in developing countries, significantly contributes to complications such as hypertensive disorders of pregnancy and gestational diabetes. While it is recognized that vitamin deficiencies impact iron metabolism and erythropoiesis, a complete understanding of their specific roles in preventing and managing IDGA is lacking.

View Article and Find Full Text PDF