98%
921
2 minutes
20
The DNA-encoded library (DEL) is a robust tool for chemical biology and drug discovery. In this study, we developed a DNA-compatible light-promoted reaction that is highly efficient and plate-compatible for DEL construction based on the formation of the indazolone scaffold. Employing this high-efficiency approach, we constructed a DEL featuring an indazolone core, which enabled the identification of a novel series of ligands specifically targeting E1A-binding protein (p300) after DEL selection. Taken together, our findings underscore the feasibility of light-promoted reactions in DEL synthesis and unveil promising avenues for developing p300-targeting inhibitors.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.bioconjchem.4c00307 | DOI Listing |
J Am Chem Soc
September 2025
School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China.
Nitrogen heterocycles are indispensable structural motifs in pharmaceuticals, agrochemicals, and materials science. However, the development of new synthetic methods to access these frameworks remains a significant challenge. Here, we describe a switchable radical approach for the synthesis of 1-azabicyclo[2.
View Article and Find Full Text PDFiScience
September 2025
Institute of Pharmaceutical and Biomedical Sciences (IPBS), 55128 Mainz, Germany.
DNMT2 (TRDMT1) is a human RNA methyltransferase implicated in various disease processes. However, small-molecule targeting of DNMT2 remains challenging due to poor selectivity and low cellular availability of known -adenosylhomocysteine (SAH)-derived ligands. In this study, a DNA-encoded library (DEL) screen identified five non-SAH-like chemotypes that selectively bind DNMT2, including three peptidomimetics.
View Article and Find Full Text PDFJ Exp Med
November 2025
Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, UK.
The NLRP3 inflammasome is an intracellular protein complex that causes inflammation via the release of IL-1β and pyroptosis. NLRP3 activation is associated with many age-related inflammatory diseases, and NLRP3 inhibition is a promising therapeutic strategy. We previously performed a DNA-encoded library screen to identify novel NLRP3-binding molecules.
View Article and Find Full Text PDFChem Pharm Bull (Tokyo)
August 2025
Graduate School of Pharmaceutical Sciences, The University of Osaka.
Recently, oligonucleotide-based drug discovery has attracted considerable amounts of attention. As oligonucleotide therapeutics have evolved into practical use, research into the development of functional artificial nucleic acids has been vigorously conducted worldwide. However, the synthesis of artificial nucleic acids generally requires long sequences from starting materials; hence, structurally optimizing oligonucleotide therapeutics is extremely difficult.
View Article and Find Full Text PDFMedComm (2020)
September 2025
DP Technology Beijing China.
RNA-targeting small molecules represent a transformative frontier in drug discovery, offering novel therapeutic avenues for diseases traditionally deemed undruggable. This review explores the latest advancements in the development of RNA-binding small molecules, focusing on the current obstacles and promising avenues for future research. We highlight innovations in RNA structure determination, including X-ray crystallography, nuclear magnetic resonance spectroscopy, and cryo-electron microscopy, which provide the foundation for rational drug design.
View Article and Find Full Text PDF