98%
921
2 minutes
20
DNMT2 (TRDMT1) is a human RNA methyltransferase implicated in various disease processes. However, small-molecule targeting of DNMT2 remains challenging due to poor selectivity and low cellular availability of known -adenosylhomocysteine (SAH)-derived ligands. In this study, a DNA-encoded library (DEL) screen identified five non-SAH-like chemotypes that selectively bind DNMT2, including three peptidomimetics. Orthogonal assays confirmed target engagement, and X-ray crystallography revealed a previously unknown allosteric binding pocket formed via active site loop rearrangement. Guided by structural insights, the authors optimized a lead compound with a of 3.04 μM that reduces mC levels in MOLM-13 tRNA and synergizes with doxorubicin to impair cell viability. These inhibitors exhibit unprecedented selectivity over other methyltransferases, offering a promising scaffold for future DNMT2-targeting therapeutics. Beyond pharmacological implications, the study provides conceptual advances in understanding allosteric modulation and structural plasticity of DNMT2.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12396291 | PMC |
http://dx.doi.org/10.1016/j.isci.2025.113300 | DOI Listing |
RSC Chem Biol
July 2025
Institute for Pharmaceutical Chemistry, Johann Wolfgang Goethe-University Max-von-Laue-Str. 9 D-60438 Frankfurt am Main Germany
Herein we present the rapid development of LH168, a potent and highly selective chemical probe for WDR5, streamlined by utilizing a DEL-ML (DNA encoded library-machine learning) hit as the chemical starting point. LH168 was comprehensively characterized in bioassays and demonstrated potent target engagement at the WIN-site pocket of WDR5, with an EC of approximately 10 nM, a long residence time, and exceptional proteome-wide selectivity for WDR5. In addition, we present the X-ray co-crystal structure and provide insights into the structure-activity relationships (SAR).
View Article and Find Full Text PDFAnal Chem
September 2025
Laboratory of Organic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland.
DNA-encoded libraries have become widely used in drug discovery, and several different setups to link chemical compounds to DNA have been employed in the field, including single-stranded and double-stranded DNA tags as well as a variety of linker chemistries. In our previous study, we observed distinct differences in binding affinities between ligands coupled either to single-stranded or double-stranded DNA; however, the molecular basis for these differences remained unclear. Here, we present a native ion mobility mass spectrometry approach that incorporates gas- and solution-phase activation techniques to systematically investigate these differences, specifically the impact of DNA tags on binding performance in protein-ligand interactions.
View Article and Find Full Text PDFJ Am Chem Soc
September 2025
School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China.
Nitrogen heterocycles are indispensable structural motifs in pharmaceuticals, agrochemicals, and materials science. However, the development of new synthetic methods to access these frameworks remains a significant challenge. Here, we describe a switchable radical approach for the synthesis of 1-azabicyclo[2.
View Article and Find Full Text PDFiScience
September 2025
Institute of Pharmaceutical and Biomedical Sciences (IPBS), 55128 Mainz, Germany.
DNMT2 (TRDMT1) is a human RNA methyltransferase implicated in various disease processes. However, small-molecule targeting of DNMT2 remains challenging due to poor selectivity and low cellular availability of known -adenosylhomocysteine (SAH)-derived ligands. In this study, a DNA-encoded library (DEL) screen identified five non-SAH-like chemotypes that selectively bind DNMT2, including three peptidomimetics.
View Article and Find Full Text PDFJ Exp Med
November 2025
Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, UK.
The NLRP3 inflammasome is an intracellular protein complex that causes inflammation via the release of IL-1β and pyroptosis. NLRP3 activation is associated with many age-related inflammatory diseases, and NLRP3 inhibition is a promising therapeutic strategy. We previously performed a DNA-encoded library screen to identify novel NLRP3-binding molecules.
View Article and Find Full Text PDF