98%
921
2 minutes
20
Large-scale afforestation programmes are generally presented as effective ways of increasing the terrestrial carbon sink while preserving water availability and biodiversity. Yet, a meta-analysis of both numerical and observational studies suggests that further research is needed to support this view. The use of inappropriate concepts (e.g., the biotic pump theory), the poor simulation of key processes (e.g., tree mortality, water use efficiency), and the limited model ability to capture recent observed trends (e.g., increasing water vapour deficit, terrestrial carbon uptake) should all draw our attention to the limitations of available theories and Earth System Models. Observations, either based on remote sensing or on early afforestation initiatives, also suggest potential trade-offs between terrestrial carbon uptake and water availability. There is thus a need to better monitor and physically understand the observed fluctuations of the terrestrial water and carbon cycles to promote suitable nature-based mitigation pathways depending on pre-existing vegetation, scale, as well as baseline and future climates.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2024.175299 | DOI Listing |
Plant Physiol Biochem
September 2025
Department of Environmental Health, School of Public Health, Shanxi Medical University, Taiyuan, 030001, Shanxi, China; MOE Key Laboratory of Coal Environmental Pathogenicity and Prevention, Shanxi Medical University, Taiyuan, 030001, Shanxi, China; Center for Ecological Public Health Security of Ye
Nanoplastics (NPs) have raised increasing attention due to their potential environmental risks to terrestrial vegetation and food security. However, for the plants with various photosynthetic pathways, the differences in their photosynthetic response and related mechanisms upon NPs exposure are still unclear. Here, the photosynthetic responses of typical soybean and corn plants under polystyrene NPs (PSNPs) exposure were systematically compared for the first time.
View Article and Find Full Text PDFJ Environ Manage
September 2025
Key Lab of Basin Water Resource and Eco-Environmental Science in Hubei Province, Basin Water Environmental Research Department, Changjiang River Scientific Research Institute, No.23 Huangpu Road, Wuhan, 430010, PR China; Innovation Team for Basin Water Environmental Protection and Governance of Chan
Small cascade dams drive spatial divergence in the composition of dissolved organic matter (DOM) in local sediments. Taking Xixi River in the southeast of China, a representative small cascade-dammed watershed, as an example, this study explored the spatial variations of DOM components and its interactions with microbial communities under the influence of cascade dams. Results revealed that DOM composition differed significantly, i.
View Article and Find Full Text PDFAnaerobic methanotrophic archaea (ANME) are crucial to planetary carbon cycling. They oxidise methane in anoxic niches by transferring electrons to nitrate, metal oxides, or sulfate-reducing bacteria. No ANMEs have been isolated, hampering the biochemical investigation of anaerobic methane oxidation.
View Article and Find Full Text PDFEnviron Monit Assess
September 2025
School of Biosciences, Mahatma Gandhi University, Kottayam, Kerala, 686560, India.
Soil green algae play a crucial role in terrestrial ecosystems and enhance soil health. However, research on algal diversity and ecology in crop field soils, particularly in untilled perennial tree plantations, is scarce, and the factors influencing algal contributions to soil health and fertility management are not well understood. Therefore, an extensive study was conducted on the ecology and diversity of green algae in rubber crop plantations in South India, spanning diverse agroclimatic zones, soil orders, soil series, and seasons.
View Article and Find Full Text PDFSerpentinites, hydrated ultramafic rocks that produce [hyper]alkaline, reducing, H2-rich groundwaters, host subsurface microbial ecosystems. Though in the presence of enormous reducing power, life in serpentinizing systems is limited by oxidant and carbon availability. The forms of carbon that support the serpentinite-hosted microbiome, and their rates of biological assimilation, remain poorly understood.
View Article and Find Full Text PDF