Integrated single-cell and bulk RNA sequencing analyses identify an immunotherapy nonresponse-related fibroblast signature in gastric cancer.

Anticancer Drugs

Department of Medical Oncology, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China.

Published: November 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Factors that determine nonresponse to immune checkpoint inhibitor (ICI) remain unclear. The protumor activities of cancer-associated fibroblasts (CAFs) suggest that they are potential therapeutic targets for cancer treatment. There is, however, a lack of CAF-related signature in predicting response to immunotherapy in gastric cancer (GC). Single-cell RNA sequencing (scRNA-seq) and RNA sequencing (RNA-seq) data of GC immunotherapy were downloaded from the Gene Expression Omnibus database. Bulk RNA-seq data were obtained from The Cancer Genome Atlas. The R package 'Seurat' was used for scRNA-seq data processing. Cellular infiltration, receptor-ligand interactions, and evolutionary trajectory analysis were further explored. Differentially expressed genes affecting overall survival were obtained using the limma package. Weighted Gene Correlation Network Analysis was used to identify key modules of immunotherapy nonresponder. Prognostic model was constructed by univariate Cox and least absolute contraction and selection operator analysis using the intersection of activated fibroblast genes (AFGs) with key module genes. The differences in clinicopathological features, immune microenvironment, immunotherapy prediction, and sensitivity to small molecule agents between the high- and low-risk groups were further investigated. Based on scRNA-seq, we finally identified 20 AFGs associations with the prognosis of GC patients. AFGs' high expression levels were correlated with both poor prognosis and tumor progression. Three genes ( FRZB , SPARC , and FKBP10 ) were identified as immunotherapy nonresponse-related fibroblast genes and used to construct the prognostic signature. This signature is an independent significant risk factor affecting the clinical outcomes of GC patients. Remarkably, there were more CD4 memory T cells, resting mast cells, and M2 macrophages infiltrating in the high-risk group, which was characterized by higher tumor immune exclusion. Moreover, patients with higher risk scores were more prone to not respond to immunotherapy but were more sensitive to various small molecule agents, such as memantine. In conclusion, this study constructed a fibroblast-associated ICI nonresponse gene signature, which could predict the response to immunotherapy. This study potentially revealed a novel way to overcome immune resistance in GC.

Download full-text PDF

Source
http://dx.doi.org/10.1097/CAD.0000000000001651DOI Listing

Publication Analysis

Top Keywords

rna sequencing
12
immunotherapy
8
immunotherapy nonresponse-related
8
nonresponse-related fibroblast
8
gastric cancer
8
response immunotherapy
8
rna-seq data
8
fibroblast genes
8
small molecule
8
molecule agents
8

Similar Publications

Purpose: Advancements in sequencing technologies have significantly improved clinical genetic testing, yet the diagnostic yield remains around 30-40%. Emerging technologies are now being deployed to address the remaining diagnostic gap.

Methods: We tested whether short-read genome sequencing could increase the diagnostic yield in individuals enrolled into the UCI-GREGoR research study, who had suspected Mendelian conditions and prior inconclusive testing.

View Article and Find Full Text PDF

Multi-Omics and Clinical Validation Identify Key Glycolysis- and Immune-Related Genes in Sepsis.

Int J Gen Med

September 2025

Department of Geriatrics, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, People's Republic of China.

Background: Sepsis is characterized by profound immune and metabolic perturbations, with glycolysis serving as a pivotal modulator of immune responses. However, the molecular mechanisms linking glycolytic reprogramming to immune dysfunction remain poorly defined.

Methods: Transcriptomic profiles of sepsis were obtained from the Gene Expression Omnibus.

View Article and Find Full Text PDF

PRMT1-Mediated PARP1 Methylation Drives Lung Metastasis and Chemoresistance via P65 Activation in Triple-Negative Breast Cancer.

Research (Wash D C)

September 2025

State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China.

Triple-negative breast cancer (TNBC) is the most aggressive breast cancer subtype, characterized by a high propensity for metastasis, poor prognosis, and limited treatment options. Research has demonstrated a substantial correlation between the expression of protein arginine N-methyltransferase 1 (PRMT1) and enhanced proliferation, metastasis, and poor outcomes in TNBC. However, the specific role of PRMT1 in lung metastasis and chemoresistance remains unclear.

View Article and Find Full Text PDF

Gut microbiota dysbiosis in people living with HIV who have cancer: novel insights and diagnostic potential.

Front Immunol

September 2025

Guangxi Key Laboratory of AIDS Prevention and Treatment & School of Public Health, Guangxi Medical University, Nanning, Guangxi, China.

Background: People living with HIV(PLWH) are a high-risk population for cancer. We conducted a pioneering study on the gut microbiota of PLWH with various types of cancer, revealing key microbiota.

Methods: We collected stool samples from 54 PLWH who have cancer (PLWH-C), including Kaposi's sarcoma (KS, n=7), lymphoma (L, n=22), lung cancer (LC, n=12), and colorectal cancer (CRC, n=13), 55 PLWH who do not have cancer (PLWH-NC), and 49 people living without HIV (Ctrl).

View Article and Find Full Text PDF

Background: Metabolic reprogramming is an important hallmark of cervical cancer (CC), and extensive studies have provided important information for translational and clinical oncology. Here we sought to determine metabolic association with molecular aberrations, telomere maintenance and outcomes in CC.

Methods: RNA sequencing data from TCGA cohort of CC was analyzed for their metabolic gene expression profile and consensus clustering was then performed to classify tumors into different groups/subtypes.

View Article and Find Full Text PDF