Chromosome-level scaffolding of haplotype-resolved assemblies using Hi-C data without reference genomes.

Nat Plants

Department of Human Cell Biology and Genetics, Joint Laboratory of Guangdong-Hong Kong Universities for Vascular Homeostasis and Diseases, School of Medicine, Southern University of Science and Technology, Shenzhen, China.

Published: August 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Scaffolding is crucial for constructing most chromosome-level genomes. The high-throughput chromatin conformation capture (Hi-C) technology has become the primary scaffolding strategy due to its convenience and cost-effectiveness. As sequencing technologies and assembly algorithms advance, constructing haplotype-resolved genomes is increasingly preferred because haplotypes can provide additional genetic information on allelic and non-allelic variations. ALLHiC is a widely used allele-aware scaffolding tool designed for this purpose. However, its dependence on chromosome-level reference genomes and a higher chromosome misassignment rate still impede the unravelling of haplotype-resolved genomes. Here we present HapHiC, a reference-independent allele-aware scaffolding tool with superior performance on chromosome assignment as well as contig ordering and orientation. In addition, we provide new insights into the challenges in allele-aware scaffolding by conducting comprehensive analyses on various adverse factors. Finally, with the help of HapHiC, we constructed the haplotype-resolved allotriploid genome for Miscanthus × giganteus, an important lignocellulosic bioenergy crop.

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41477-024-01755-3DOI Listing

Publication Analysis

Top Keywords

allele-aware scaffolding
12
reference genomes
8
haplotype-resolved genomes
8
scaffolding tool
8
genomes
5
scaffolding
5
chromosome-level scaffolding
4
haplotype-resolved
4
scaffolding haplotype-resolved
4
haplotype-resolved assemblies
4

Similar Publications

Chromosome-level scaffolding of haplotype-resolved assemblies using Hi-C data without reference genomes.

Nat Plants

August 2024

Department of Human Cell Biology and Genetics, Joint Laboratory of Guangdong-Hong Kong Universities for Vascular Homeostasis and Diseases, School of Medicine, Southern University of Science and Technology, Shenzhen, China.

Scaffolding is crucial for constructing most chromosome-level genomes. The high-throughput chromatin conformation capture (Hi-C) technology has become the primary scaffolding strategy due to its convenience and cost-effectiveness. As sequencing technologies and assembly algorithms advance, constructing haplotype-resolved genomes is increasingly preferred because haplotypes can provide additional genetic information on allelic and non-allelic variations.

View Article and Find Full Text PDF

Artificially improving persimmon (Diospyros kaki Thunb.), one of the most important fruit trees, remains challenging owing to the lack of reference genomes. In this study, we generated an allele-aware chromosome-level genome assembly for the autohexaploid persimmon 'Xiaoguotianshi' (Chinese-PCNA type) using PacBio CCS and Hi-C technology.

View Article and Find Full Text PDF

Assembly of allele-aware, chromosomal-scale autopolyploid genomes based on Hi-C data.

Nat Plants

August 2019

Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Breeding and Multiple Utilization of Corps, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, China.

Construction of chromosome-level assembly is a vital step in achieving the goal of a 'Platinum' genome, but it remains a major challenge to assemble and anchor sequences to chromosomes in autopolyploid or highly heterozygous genomes. High-throughput chromosome conformation capture (Hi-C) technology serves as a robust tool to dramatically advance chromosome scaffolding; however, existing approaches are mostly designed for diploid genomes and often with the aim of reconstructing a haploid representation, thereby having limited power to reconstruct chromosomes for autopolyploid genomes. We developed a novel algorithm (ALLHiC) that is capable of building allele-aware, chromosomal-scale assembly for autopolyploid genomes using Hi-C paired-end reads with innovative 'prune' and 'optimize' steps.

View Article and Find Full Text PDF