98%
921
2 minutes
20
As part of the central nervous system, the optic nerve, composed of axons from retinal ganglion cells (RGCs), generally fails to regenerate on its own when injured in adult mammals. An innovative approach to promoting optic nerve regeneration involves manipulating the interactions between amacrine cells (ACs) and RGCs. Here, we identified a unique AC subtype, dopaminergic ACs (DACs), that responded early after optic nerve crush by down-regulating neuronal activity and reducing retinal dopamine (DA) release. Activating DACs or augmenting DA release with levodopa demonstrated neuroprotective effects and modestly enhanced axon regeneration. Within this context, we pinpointed the DA receptor D1 (DRD1) as a critical mediator of DAC-derived DA and showed that RGC-specific overexpression effectively overcame subtype-specific barriers to regeneration. This strategy markedly boosted RGC survival and axon regeneration after crush and preserved vision in a glaucoma model. This study unveils the crucial role of DAC-derived DA signaling in optic nerve regeneration, holding promise for therapeutic insights into neural repair.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11296332 | PMC |
http://dx.doi.org/10.1126/sciadv.ado0866 | DOI Listing |
J Neuroimaging
September 2025
Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal.
Background And Purpose: To review the existing evidence on multiple timepoint assessments of optic nerve sheath diameter (ONSD) as an indicator of intraindividual variation of intracranial pressure (ICP).
Methods: A systematic search identified studies assessing intraindividual variation in ICP through multiple timepoint measurements of ONSD using ultrasonography. Meta-analysis of studies assessing intraindividual correlation coefficients between ONSD and ICP was performed using a random effects model, and we calculated the weighted correlation coefficient for the expected change in ICP associated with variations in ONSD.
Mult Scler Relat Disord
September 2025
Neurologist-Neuroimmunologist. Associate Professor of Neurology, Neuroscience Department, Division of Neurology, Pontificia Universidad Javeriana, Hospital Universitario San Ignacio, Bogotá, Colombia. Electronic address:
Background: Headache is a common but underrecognized symptom in optic neuritis (ON), with potential implications for diagnosis and management.
Objective: To assess the clinical and radiological factors associated with headache in patients with acute ON.
Methods: We conducted a retrospective case-control study in a tertiary hospital in Bogotá, Colombia (2022-2024).
Neuroradiology
September 2025
Universitair Ziekenhuis Leuven, Leuven, Belgium.
Aim: Volumetric analysis of orbital soft tissues using magnetic resonance imaging (MRI) offers valuable diagnostic and pathophysiological insights into orbital inflammation, trauma, and tumors. However, the optimal MRI protocols and post-processing methods for specific conditions remain unclear.
Methods: A systematic search was performed in PubMed/MEDLINE, Web of Science, and Cochrane Library for all studies published before November 2024.
Int Ophthalmol
September 2025
Beijing Tongren Eye Center, Beijing Tongren Hospital, Beijing key Laboratory of Intraocular Tumor Diagnosis and Treatment, Beijing Ophthalmology and Visual Sciences Key Lab, Medical Artificial Intelligence Research and Verification Key Laboratory of the Ministry of Industry and Information Technolog
Purpose: To analyze macular microvascular networks and investigate correlations between visual acuity and quantitative parameters in patients with Leber's hereditary optic neuropathy (LHON) using optical coherence tomography angiography (OCTA).
Methods: An observational, cross-sectional study was conducted, including 25 eyes from 25 genetically confirmed chronic LHON patients and 25 eyes from 25 age-matched healthy controls. Images were obtained using a spectral domain OCTA system.
BMJ Open
September 2025
Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.
Introduction: Blue light (peak wavelength 442 nm) has been shown to modulate the immune response in preclinical models of intra-abdominal sepsis and pneumonia. pathways involve optic nerve stimulation with transmission to the central nervous system, activation of parasympathetic pathways terminating at the spleen, and downstream immune effects including decreased inflammatory tissue damage and improved pathogen clearance. Related effects on pain mediators including proinflammatory cytokines (interleukin 6, TNF- α) and autonomic tone (increased parasympathetic outflow) suggest possible analgesic properties that would be highly relevant to a trauma population.
View Article and Find Full Text PDF