98%
921
2 minutes
20
Glioblastoma (GBM) is a highly aggressive, infiltrative malignancy that cannot be completely cured by current treatment modalities, and therefore requires more precise molecular subtype signatures to predict treatment response for personalized precision therapy. Expression subtypes of GBM samples from the Cancer Genome Atlas (TCGA) were identified using BayesNM and compared with existing molecular subtypes of GBM. Biological features of the subtypes were determined by single-sample gene set enrichment analysis. Genomic and proteomic data from GBM samples were combined and Genomic Identification of Significant Targets in Cancer analysis was used to screen genes with recurrent somatic copy-number alterations phenomenon. The immune environment among subtypes was compared by assessing the expression of immune molecules and the infiltration of immune cells. Molecular subtypes adapted to immunotherapy were identified based on Tumor Immune Dysfunction and Exclusion (TIDE) score. Finally, least absolute shrinkage and selection operator (LASSO) logistic regression was performed on the expression profiles of S2, S3 and S4 in TCGA-GBM and RPPA to determine the respective corresponding best predictive model. Four novel molecular subtypes were classified. Specifically, S1 exhibited a low proliferative profile; S2 exhibited the profile of high proliferation, IDH1 mutation, TP53 mutation and deletion; S3 was characterized by high immune scores, innate immunity and adaptive immune infiltration scores, with the lowest TIDE score and was most likely to benefit from immunotherapy; S4 was characterized by high proliferation, EGFR amplification, and high protein abundance, and was the most suitable subtype for bevacizumab. LASSO analysis constructed the best prediction model composed of 13 genes in S2 with an accuracy of 96.7%, and the prediction model consisting of 17 genes in S3 with an accuracy of 86.7%, and screened 14 genes as components of the best prediction model in S4 with an accuracy of 93%. To conclude, our study classified reproducible and robust molecular subtypes of GBM, and these findings might contribute to the identification of patients responding to immunotherapy, thereby improving GBM prognosis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11292017 | PMC |
http://dx.doi.org/10.1038/s41598-024-68648-5 | DOI Listing |
NPJ Precis Oncol
September 2025
Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden.
Breast cancer is a highly heterogeneous disease with diverse outcomes, and intra-tumoral heterogeneity plays a significant role in both diagnosis and treatment. Despite its importance, the spatial distribution of intra-tumoral heterogeneity is not fully elucidated. Spatial transcriptomics has emerged as a promising tool to study the molecular mechanisms behind many diseases.
View Article and Find Full Text PDFSci Rep
September 2025
Institute of Biomedical Engineering, University of Toronto, Toronto, Canada.
Signal Transduct Target Ther
September 2025
State Key Laboratory of Molecular Oncology & Department of Medical Oncology & Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
Small-cell lung cancer (SCLC), an aggressive neuroendocrine tumor strongly associated with exposure to tobacco carcinogens, is characterized by early dissemination and dismal prognosis with a five-year overall survival of less than 7%. High-frequency gain-of-function mutations in oncogenes are rarely reported, and intratumor heterogeneity (ITH) remains to be determined in SCLC. Here, via multiomics analyses of 314 SCLCs, we found that the ASCL1/MKI67 and ASCL1/CRIP2 clusters accounted for 74.
View Article and Find Full Text PDFBiochem Pharmacol
September 2025
Department of Molecular and Translational Medicine, University of Brescia 25123 Brescia, Italy. Electronic address:
Ribonucleotide reductase (RR) is the rate-limiting enzyme for NTPs conversion into dNTPs, playing a central role in genome replication and maintenance. It is composed by two catalytic (RRM1) and two regulatory (alternatively RRM2 and p53R2) subunits, of which RRM2's functionality depends on a diferric center in the active site and is one of the most expressed genes in many tumors, among which Rhabdomyosarcoma (RMS), a rare and aggressive pediatric tumor. Didox (3,4-dihydroxy-benzohydroxamic acid) is a highly effective RRM2 inhibitor with iron chelating properties which shows fewer in vivo side effects than classical RR inhibitors.
View Article and Find Full Text PDFCell Genom
September 2025
Institute of Pathology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany; Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany. Electronic address:
Inherited genetic variants contribute to Barrett's esophagus (BE) and esophageal adenocarcinoma (EAC), but it is unknown which cell types are involved in this process. We performed single-cell RNA sequencing of BE, EAC, and paired normal tissues and integrated genome-wide association data to determine cell-type-specific genetic risk and cellular processes that contribute to BE and EAC. The analysis reveals that EAC development is driven to a greater extent by local cellular processes than BE development and suggests that one cell type of BE origin (intestinal metaplasia cells) and cellular processes that control the differentiation of columnar cells are of particular relevance for EAC development.
View Article and Find Full Text PDF