Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Aim: To describe the specific brain magnetic resonance imaging (MRI) patterns of the paediatric genetic disorders associated with white matter abnormalities in Northern Finland.

Method: In this retrospective population-based longitudinal study, brain MRI scans accumulated from 1990 to 2019 at Oulu University Hospital, Finland, were assessed. Inclusion criteria were defined as leukodystrophies or genetic diseases with significant white matter abnormalities that did not meet the criteria for leukodystrophy, at least one brain MRI, and age under 18 years at diagnosis.

Results: A total of 83 patients (48 males, 35 females) were found with 52 different diseases. The median age at the time of the brain MRI was 22 months (interquartile range [IQR] = 46 months). In 72 (87%) of the children, brain MRIs revealed abnormal findings, including cerebral white matter abnormalities (n = 49, 59%), brainstem signal abnormalities (n = 28, 34%), thinning of the corpus callosum (n = 30, 36%), delayed myelination (n = 11, 13%), and permanent hypomyelination (n = 9, 11%).

Interpretation: Symmetrical and bilateral white matter signal patterns of the brain MRI should raise suspicion of genetic disorders when the clinical symptoms are compatible. This study illustrates brain imaging patterns of childhood-onset genetic disorders in a population in Northern Finland and improves the diagnostic accuracy of rare genetic disorders.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11695792PMC
http://dx.doi.org/10.1111/dmcn.16036DOI Listing

Publication Analysis

Top Keywords

brain mri
20
genetic disorders
20
white matter
20
matter abnormalities
16
brain
8
paediatric genetic
8
disorders associated
8
associated white
8
genetic
6
disorders
5

Similar Publications

Importance: It is unclear whether the duration of amyloid-β (Aβ) pathology is associated with neurodegeneration and whether this depends on the presence of tau.

Objective: To examine the association of longitudinal atrophy with Aβ positron emission tomography (PET)-positivity (Aβ+) and the estimated duration of Aβ+ (Aβ+ duration), controlling for tau-positivity.

Design, Setting, And Participants: Data for this longitudinal cohort study were drawn from the Wisconsin Registry for Alzheimer Prevention and the Wisconsin Alzheimer Disease Research Center Clinical Core Study.

View Article and Find Full Text PDF

Background Elevated brain iron is a potential marker for neurodegeneration, but its role in predicting onset of mild cognitive impairment (MCI) and prospective cognitive trajectories remains unclear. Purpose To investigate how brain iron and amyloid-β (Aβ) levels, measured using quantitative susceptibility mapping (QSM) MRI and PET, help predict MCI onset and cognitive decline. Materials and Methods In this prospective study conducted between January 2015 and November 2022, cognitively unimpaired older adults underwent baseline QSM MRI.

View Article and Find Full Text PDF

Background And Objectives: Chiari 1 malformation (CM1) is a common MRI finding and a frequent reason for neurosurgical consultation. Although many studies have investigated surgical outcomes for patients with CM1, outcomes for those treated without surgery have been less frequently reported. The UK Chiari 1 Study reports the quality of life of adults and children with CM1 treated without surgery, 12 months after the first neurosurgical clinic visit.

View Article and Find Full Text PDF

Voxel Volume Overlap: Voxel-Size Sensitive Indicators of Subject Motion in Functional MRI.

Hum Brain Mapp

September 2025

Department of Neuropediatrics, General Pediatrics, Diabetology, Endocrinology, Social Pediatrics, University Children's Hospital, Tübingen, Germany.

Subject motion is a significant problem for the analysis of functional MRI data and is usually described by "total displacement" or "scan-to-scan displacement". Neither parameter, however, takes into account voxel size, which clearly is relevant for the actual effects of motion on the data. Consequently, it is hitherto impossible to compare motion between subjects/studies acquired using different voxel dimensions, precluding the development of generally applicable recommendations for fMRI quality control procedures.

View Article and Find Full Text PDF

Accurate brain signal recording and precise electrode placement are critical for the success of neuromodulation therapies such as deep brain stimulation (DBS). Addressing these challenges requires deep brain electrodes that provide high-quality, stable recordings while remaining compatible with high-resolution medical imaging modalities like magnetic resonance imaging (MRI). Moreover, such electrodes shall be cost-effective, easy to manufacture, and patient-compatible.

View Article and Find Full Text PDF