Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Introduction: Rice, one of the major staple food crops is frequently affected by various biotic/abiotic stresses including drought, salinity, submergence, heat, Bacterial leaf blight, Brown plant hopper, Gall midge, Stem borer, Leaf folder etc. Sustained increase of yield growth is highly necessary to meet the projected demand in rice production during the year 2050. Hence, development of high yielding and multiple stress tolerant rice varieties adapted to wider environments will serve the need.

Methods: A systematic MAB approach was followed to pyramid eight major QTLs/genes controlling tolerance to major abiotic/biotic stresses viz., drought ( and ), salinity (), submergence (), bacterial leaf blight ( and ), blast () and gall midge () in the genetic background of an elite rice culture CBMAS 14065 possessing high yield and desirable grain quality traits. Two advanced backcross derivatives of CBMAS 14065 possessing different combinations of target QTLs namely #27-1-39 (+++++) and #29-2-2 (++++) were inter-mated.

Results: Inter-mated F progenies harboring all the eight target QTLs/genes were identified through foreground selection. Genotyping of the inter-mated F population identified 14 progenies possessing all eight target QTLs/genes under homozygous conditions. All the fourteen progenies were forwarded up to F generation and evaluated for their yield and tolerance to dehydration, salinity, submergence, blast and bacterial leaf blight. All the 14 progenies exhibited enhanced tolerance to dehydration and salinity stresses by registering lesser reduction in their chlorophyll content, relative water content, root length, root biomass etc., against their recurrent parent Improved White Ponni/CBMAS 14065. All the 14 progenies harboring Sub1 loci from FR13A exhibited enhanced survival (90 - 95%) under 2 weeks of submergence /flooding when compared to their recurrent parent CBMAS 14065 which showed 100% susceptibility The inter-mated population showed a enhanced level of resistance to bacterial leaf blight (Score = 0 to 2) against blast (Score - 0) whereas the susceptible check CO 39 and the recurrent parent CBMAS 14065 recorded high level of susceptibility (Score = 7 to 9).

Conclusion Or Discussion: Our study demonstrated the accelerated development of multiple stress tolerant rice genotypes through marker assisted pyramiding of target QTLs/genes using tightly linked markers. These multiple stress tolerant rice lines will serve as excellent genetic stocks for field testing/variety release and also as parental lines in future breeding programs for developing climate resilient super rice varieties.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11272538PMC
http://dx.doi.org/10.3389/fpls.2024.1402368DOI Listing

Publication Analysis

Top Keywords

bacterial leaf
16
leaf blight
16
cbmas 14065
16
salinity submergence
12
multiple stress
12
stress tolerant
12
tolerant rice
12
target qtls/genes
12
recurrent parent
12
rice
8

Similar Publications

as the Emerging Causal Agent of Novel Bacterial Leaf Blight in Rice: Characterization and Management in Anhui, China.

Plant Dis

September 2025

Anhui Academy of Agricultural Sciences, Institute of Plant Protection and Agro-Products Safety, Nongkenan 40, Luyang District, Hefei, Anhui province,China, Hefei, Anhui Province, China, 230031;

Since its emergence in 2020, a novel bacterial leaf blight caused by Pantoea ananatis has posed a serious threat to rice production in Anhui Province, China. Through verification via Koch's postulates and three years of field monitoring, P. ananatis strain HQ01 was identified as the dominant pathogen, exhibiting high virulence even at low inoculum concentrations (10² CFU/mL).

View Article and Find Full Text PDF

Anticancer, Antioxidant and Antimicrobial Activity of . Leaf Extract.

Drug Des Devel Ther

September 2025

Mardin Artuklu University, Kızıltepe Faculty of Agricultural Sciences and Technologies, Department of Field Crops, Mardin, Artuklu, 47200, Türkiye.

Objective: This study was conducted to determine and compare the antioxidant, cytotoxic, and antimicrobial effects of spindle leaves of L. () (oleaster) leaves.

Methods: Total phenolic content was measured using the Folin-Ciocalteu method, phenolic compound analysis by liquid chromatography-electrospray ionization-tandem mass spectrometry (LC-ESI-MS/MS) and antimicrobial effect by the minimum inhibition concentration (MIC) method.

View Article and Find Full Text PDF

Survey of a grapevine microbiome through functional metagenomics.

Food Res Int

November 2025

Department of Agricultural, Forest and Food Sciences, University of Turin, Largo Braccini 2, 10095 Grugliasco, Italy; Interdepartmental Centre for Grapevines and Wine Sciences, University of Turin, Corso Enotria 2/C, 12051 Alba, Italy. Electronic address:

Microorganisms colonizing grapevines possess diverse functional capabilities that influence the health, growth, productivity and, consequently, wine quality. In this study, spatial and temporal dynamics of the microbiome of Vitis vinifera cv. Barbera grapevine were determined by shotgun sequencing.

View Article and Find Full Text PDF

Background: Southern corn leaf blight (SCLB), caused by Cochliobolus heterostrophus, is a major disease that severely affects maize production globally, especially in tropical and subtropical regions. Conventional control strategies, such as chemical fungicides and resistant cultivars, are limited due to environmental and health concerns.

Results: This study explores Bacillus velezensis JLU-55 as a potential biological control agent against C.

View Article and Find Full Text PDF

Bacterial leaf streak (BLS), caused by pv. (), has recently emerged as a significant threat to wheat production in the Northern Great Plains region of the US. Deploying resistant cultivars is an economical and practical method of controlling BLS.

View Article and Find Full Text PDF