ABA exerts a promotive effect on the early process of somatic embryogenesis in Quercus aliena Bl.

Plant Physiol Biochem

State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Beijing, 100083, China; Research Center of Deciduous Oaks, Beijing Forestry University, Beijing, 100083, China; Deciduous Oak Improvement and Regeneration Innovation Team of National Forestry and Grassland

Published: September 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Quercus aliena, a native Chinese tree species, is significant in industry and landscaping. However, it is traditionally propagated by seeds with many limitations, such as pest infestations, seed yield and quality. Thus, this study firstly introduces a somatic embryogenesis (SE) system for Q. aliena, enhancing its cultivation prospects. Thereinto, the development stage of zygotic embryo had a significant effect on SE, only immature embryos in 10-11 weeks after full bloom (WAF), rich in endogenous abscisic acid (ABA), could induce SE. Exogenous application ABA had positive roles in the early development process of both primary and secondary SE, while its antagonist had opposite roles. Transcriptome analysis showed that transcription regulation occupied the major position. Mfuzz cluster and WGCNA co-expression analysis showed that 24 candidate genes were involved in the SE process. The expression of the 24 genes were also affected by exogenous ABA signals, among which QaLEC2, QaCALS11 and QaSSRP1 occupied the important roles. Additionally, the callose content were also affected by exogenous ABA signals, which had significantly positive correlations with the expression of QaLEC2 and QaCALS11. This study not only established an efficient reproduction system for Q. aliena, but also revealed the difference in embryogenic ability of zygotic embryos from the aspects of transcriptome and endogenous hormone content, and lay a foundation for clarifying the molecular mechanism of SE, and provided a reference for exploring the vital roles of ABA in SE.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.plaphy.2024.108969DOI Listing

Publication Analysis

Top Keywords

somatic embryogenesis
8
quercus aliena
8
system aliena
8
exogenous aba
8
aba signals
8
qalec2 qacals11
8
aba
6
aba exerts
4
exerts promotive
4
promotive early
4

Similar Publications

Somatic embryogenesis (SE) is an in vitro mass propagation system widely employed in plant breeding programs. However, its efficiency in many forest species remains limited due to their recalcitrance. SE relies on the induction of somatic cell reprogramming into embryogenic pathways, a process influenced by transcriptomic changes regulated, among other factors, by epigenetic modifications such as DNA methylation, histone methylation, and histone acetylation.

View Article and Find Full Text PDF

Canine somatic cell nuclear transfer (SCNT) is a powerful technology that can be used to clone beloved companion dogs, produce valuable working dogs, rescue endangered canine breeds, and create genetically engineered dogs. Nevertheless, the application of this technology is hindered by the low developmental efficiency of canine SCNT embryos. It has been shown that in pig and horse cloning using mesenchymal stem cells (MSCs), compared with fibroblasts, as donor cells can enhance the developmental potential of SCNT embryos.

View Article and Find Full Text PDF

Hidden within host cells, the endosymbiont is the most prevalent bacterial infection in the animal kingdom. Scientific breakthroughs over the past century yielded fundamental mechanisms by which controls arthropod reproduction to shape dynamic ecological and evolutionary trajectories. However, the structure and spatial organization of symbiont machineries that underpin intracellular colonization and orchestrate maternal inheritance remain unknown.

View Article and Find Full Text PDF

Transgenic mouse models for investigating human expression during development and its roles in FSHD pathophysiology.

bioRxiv

August 2025

Department of Pharmacology, Center for Molecular Medicine, University of Nevada, Reno School of Medicine, 1664 N Virginia St., Reno, NV 89557 USA.

Facioscapulohumeral muscular dystrophy (FSHD) is an autosomal dominant myopathy caused by aberrant expression of the retrogene, and it affects skeletal muscles primarily in the face, shoulder, and limbs. In healthy individuals, is expressed in early development and is subsequently silenced in most somatic tissues. The spatiotemporal pattern of DUX4 misexpression beyond the cleavage stage in FSHD is poorly understood because is not well conserved beyond primates.

View Article and Find Full Text PDF

The cellular epigenetic blueprint of plant regeneration.

Curr Opin Plant Biol

September 2025

State Key Laboratory of Gene Function and Modulation Research, Beijing Advanced Center of RNA Biology (BEACON), School of Advanced Agricultural Sciences, Peking University, 100871, Beijing, China. Electronic address:

Plants exhibit remarkable regenerative capacities, enabling tissue repair, de novo organogenesis, and somatic embryogenesis in response to mechanical injury or phytohormone induction. At the cellular level, this process is driven by the establishment of pluripotency and cell fate specification, regulated through dynamic epigenomic remodeling. Emerging studies have begun to unravel the intricate regulatory circuits governing regeneration in a cell-type- and lineage-specific manner.

View Article and Find Full Text PDF