98%
921
2 minutes
20
Herein, a novel molecularly imprinted gel (MIG)-based electrochemical sensor equipped with hydrated zirconium oxide@hollow carbon spheres (ZrO(OH)@HCS) was developed for highly sensitive and selective detection of tert-butylhydroquinone (TBHQ) in foods. The MIG was synthesized by using L-histidine to rapidly cross-link cationic guar gum, acrylamide and TBHQ through intermolecular hydrogen bonds and electrostatic interactions at room temperature, which offered outstanding specific recognition performance for TBHQ. ZrO(OH)@HCS possessing excellent conductivity and water dispersibility was employed for signal amplification. Under optimal conditions, the MIG-ZrO(OH)@HCS/GCE sensor showed a wide dynamic detection range (0.025-100 μM) with a low limit of detection (6.7 nM). TBHQ recovery experiments were conducted in spiked peanut oil and milk powder, yielding excellent recoveries. Moreover, the sensor was successfully utilized to detect TBHQ levels in snowflake chicken cutlets, crispy fried pork and boneless chicken fillets, and the results were in agreement with those obtained by the high performance liquid chromatography method.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.foodchem.2024.140600 | DOI Listing |
Anal Methods
September 2025
College of Environmental Science and Engineering, Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Niversity Engineering Research Center of Watershed Protection and Green Development, Guilin University of Technology, Guilin, 541006, China.
The amplification of detection signals is an important method for improving the sensitivity of electrochemical detection. This study presents an efficient strategy for preparing electrochemical catalytic materials using a simple self-assembly technique to encapsulate Fe single atoms (Fe-SAs) and Ni single atoms (Ni-SAs) in the Cu-benzene-1,3,5-tricarboxylic acid (Cu-BTC) metal-organic framework to form a Cu-BTC@FeNi-SAs catalytic system. Subsequently, Cu-BTC@FeNi-SAs was modified on the surface of a gold electrode, and sulfadiazine was used as a template to prepare a molecularly imprinted polymer (MIP) on the modified electrode.
View Article and Find Full Text PDFTalanta
September 2025
Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Assiut University, Assiut, 71526 Egypt. Electronic address:
Rutin is a potent antioxidant with therapeutic value in managing vascular and inflammatory conditions. Its accurate quantification is critical for pharmaceutical quality control and food safety. In this study, rutin was employed as a template to construct surface molecularly imprinted magnetic nanozymes (MIPs@FeO-CoNi).
View Article and Find Full Text PDFFood Chem
September 2025
School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430028, China.
A versatile fluorescent molecularly imprinted nanosensor (MIPs@O-CDs) for profiling ciprofloxacin (CIP) was innovatively developed using a controllable post-imprinting modification strategy. High-affinity molecularly imprinted polymers (MIPs) as recognition elements granted nanosensor favorable anti-interference. Bright orange-emission carbon dots (O-CDs) as signal transducers demonstrated prominent reverse fluorescence response to CIP due to inner filter effect, ameliorating detection sensitivity and accuracy.
View Article and Find Full Text PDFJ Fluoresc
September 2025
School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin, 541004, China.
The pervasive concern regarding veterinary drug residues in food necessitates advanced detection solutions, particularly addressing limitations of conventional methods reliant on large-scale instrumentation that incur prolonged analysis duration, complex sample preparation, and lack of real-time on-site capability. A portable "single response-on" molecularly imprinted ratiometric fluorescent paper-based sensor was developed for quantifying fleroxacin (FLX) residues in animal-derived foods, wherein B, N-co-doped MXene quantum dot (B, N-MQD) was synthesized and combined with BCP-Eu as dual-emission fluorophores, while FLX- molecularly imprinted polymer (FLX-MIP) was engineered using functionalized Nano-SiO as the carrier. Concentration-dependent fluorescence enhancement at 574 nm was exhibited with invariant reference signal at 411 nm, achieving a 36-fold lower detection limit (0.
View Article and Find Full Text PDFAdv Healthc Mater
September 2025
David Price Evans Global Health and Infectious Diseases Group, Pharmacology & Therapeutics, Institute of Systems Molecular and Integrative Biology, University of Liverpool, Crown Street, Liverpool, L69 7BE, UK.
Early diagnosis of Alzheimer's disease (AD) is hindered by the high cost, complexity, and centralization of current diagnostic platforms such as enzyme-linked immunosorbent assay (ELISA) and single-molecule array (SIMOA). Here, an integrated point-of-care (PoC) biosensing platform is reported based on redox-active polyphenol red molecularly imprinted polymers (pPhR MIPs) deposited on highly porous gold (HPG) electrodes for the ultrasensitive, reagent-free detection of phosphorylated tau 181 (p-tau 181) in undiluted plasma and serum. The unique electrochemical interface combines the signal-enhancing properties of HPG with the redox functionality of pPhR, eliminating the need for external redox probes.
View Article and Find Full Text PDF