98%
921
2 minutes
20
Breast muscle growth rate and intramuscular fat (IMF) content show apparent differences between fast-growing broilers and slow-growing indigenous chickens. However, the underlying genetic basis of these phenotypic characteristics remains elusive. In this study, we investigate the dynamic alterations of three-dimensional genome architecture and chromatin accessibility in breast muscle across four key developmental stages from embryo to starter chick in Arbor Acres (AA) broilers and Yufen (YF) indigenous chickens. The limited breed-specifically up-regulated genes (Bup-DEGs) are embedded in breed-specific A compartment, while a majority of the Bup-DEGs involving myogenesis and adipogenesis are regulated by the breed-specific TAD reprogramming. Chromatin loops allow distal accessible regions to interact with myogenic genes, and those loops share an extremely low similarity between chicken with different growth rate. Moreover, AA-specific loop interactions promote the expression of 40 Bup-DEGs, such as IGF1, which contributes to myofiber hypertrophy. YF-specific loop interactions or distal accessible regions lead to increased expression of 5 Bup-DEGs, including PIGO, PEMT, DHCR7, TMEM38B, and DHDH, which contribute to IMF deposition. These results help elucidate the regulation of breast muscle growth and IMF deposition in chickens.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11283561 | PMC |
http://dx.doi.org/10.1038/s42003-024-06599-3 | DOI Listing |
Cureus
August 2025
School of Medicine, Universidad Central del Caribe, Bayamon, PRI.
Background Breast augmentation surgery (BAS) is one of the top cosmetic surgical procedures performed in the United States every year. There are various breast implant options, such as saline, silicone, smooth, and textured implants. Breast implant illness (BII) is a disorder associated with a wide array of symptoms presenting post breast implant surgery and is often associated with autoimmune disorders.
View Article and Find Full Text PDFSurg Case Rep
September 2025
Department of Surgery, Kyushu University Beppu Hospital, Beppu, Oita, Japan.
Introduction: Glycogen storage disease type IX (GSD type IX) is caused by a deficiency in phosphorylase b kinase (PHK) and is classified into hepatic (IXa-c) and muscular (IXd) subtypes. GSD type IXd leads to exercise intolerance, rhabdomyolysis, and myoglobinuria owing to impaired glycogen breakdown. It is a rare and mild metabolic disorder, with only 19 reported cases of mutations.
View Article and Find Full Text PDFMalignant phyllodes tumors of the breast are rare fibroepithelial neoplasms with aggressive behavior and high recurrence rates. They pose significant diagnostic and therapeutic challenges due to their overlap with other malignancies, necessitating accurate diagnosis and a tailored treatment approach to improve patient outcomes. A 29-year-old Asian female initially underwent a lumpectomy for a right breast mass diagnosed as a phyllodes tumor on histopathology.
View Article and Find Full Text PDFMedComm (2020)
September 2025
Department of Laboratory Medicine Zhongnan Hospital of Wuhan University Wuhan China.
RNA modifications, including N6-methyladenosine (m6A), 5-methylcytosine, and pseudouridine, serve as pivotal regulators of gene expression with significant implications for human health and disease. These dynamic modifications influence RNA stability, splicing, translation, and interactions, thereby orchestrating critical biological processes such as embryonic development, immune response, and cellular homeostasis. Dysregulation of RNA modifications is closely associated with a variety of pathologies.
View Article and Find Full Text PDFNihon Hoshasen Gijutsu Gakkai Zasshi
September 2025
Department of Radiological Technology, Faculty of Health Sciences, Gifu University of Medical Science.
Purpose: We aimed to develop an AI-based system to score the positioning in mammography (MG), with the goal of establishing a foundation for future technical support.
Methods: Using 800 mediolateral oblique (MLO) images, we developed an AI model (Mask Generation Model) for automatic extraction of three regions: the pectoralis major muscle, the mammary gland region, and the nipple. Using this model, we extracted three regions from 1544 MLO images and generated mask images.