Age as an Effect Modifier of the Effects of Transcutaneous Auricular Vagus Nerve Stimulation (taVNS) on Heart Rate Variability in Healthy Subjects.

J Clin Med

Neuromodulation Center, Center for Clinical Research Learning, Spaulding Rehabilitation Hospital, Massachusetts General Hospital, Harvard Medical School, 1575 Cambridge Street, Cambridge, MA 02139, USA.

Published: July 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

: Evidence suggests that vagus nerve stimulation can modulate heart rate variability (HRV). However, there is a lack of mechanistic studies in healthy subjects assessing the effects of bilateral transcutaneous auricular vagus nerve stimulation (taVNS) on HRV. Our study aims to investigate how taVNS can influence the HRV response, including the influence of demographic variables in this response. : Therefore, we conducted a randomized controlled study with 44 subjects, 22 allocated to active and 22 to sham taVNS. : Our results showed a significant difference between groups in the high-frequency (HF) metric. Active taVNS increased the HF metric significantly as compared to sham taVNS. Also, we found that age was a significant effect modifier of the relationship between taVNS and HF-HRV, as a larger increase in HF-HRV was seen in the older subjects. Importantly, there was a decrease in HF-HRV in the sham group. : These findings suggest that younger subjects can adapt and maintain a constant level of HF-HRV regardless of the type of stimulation, but in the older subjects, only the active taVNS recipients were able to maintain and increase their HF-HRV. These results are important because they indicate that taVNS can enhance physiological regulation processes in response to external events.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11278058PMC
http://dx.doi.org/10.3390/jcm13144267DOI Listing

Publication Analysis

Top Keywords

vagus nerve
12
nerve stimulation
12
tavns
9
age modifier
8
transcutaneous auricular
8
auricular vagus
8
stimulation tavns
8
heart rate
8
rate variability
8
healthy subjects
8

Similar Publications

Neural activity is increasingly recognized as a crucial regulator of cancer growth. In the brain, neuronal activity robustly influences glioma growth through paracrine mechanisms and by electrochemical integration of malignant cells into neural circuitry via neuron-to-glioma synapses. Outside of the central nervous system, innervation of tumours such as prostate, head and neck, breast, pancreatic, and gastrointestinal cancers by peripheral nerves similarly regulates cancer progression.

View Article and Find Full Text PDF

Aim: This study explores the evolving landscape of gastrectomy procedures in Japan, based on nationwide surveys conducted in 2014 and 2021. It highlights changes in surgical approaches, including a growing focus on minimally invasive and function-preserving procedures, as well as the increasing consideration of postoperative quality of life (QOL).

Methods: Two nationwide questionnaire surveys were conducted in 2014 and 2021, targeting members of the Japanese Society for Gastro-surgical Pathophysiology.

View Article and Find Full Text PDF

Background: Eating disorders such as Anorexia Nervosa (AN) and Bulimia Nervosa (BN) were previously found to partly entail alterations in stress physiology including salivary cortisol (sC), and salivary alpha amylase (sAA) at rest and basal vagal tone (HF-HRV), compared to individuals without mental disorders or with mixed mental disorders (anxiety and depressive disorders), but corresponding data remain scarce and are not entirely consistent.

Method: HF-HRV, sC and sAA at rest were assessed in a female sample of 58 individuals with AN and 54 individuals with BN before and after psychotherapy and contrasted against measurements from 59 female individuals suffering from mixed disorders and 101female healthy controls.

Results: Values for sC were elevated in AN compared to all other groups, those for HF-HRV were highest in both AN and BN and lowest in mixed mental disorders and no differences were found at rest for sAA.

View Article and Find Full Text PDF

Vagus nerve stimulation (VNS) is a promising therapy for neurological and inflammatory disorders across multiple organ systems. However, conventional rigid interfaces fail to accommodate dynamic mechanical environments, leading to mechanical mismatches, tissue irritation, and unstable long-term interfaces. Although soft neural interfaces address these limitations, maintaining mechanical durability and stable electrical performance remains challenging.

View Article and Find Full Text PDF