Understanding the Conundrum of Pancreatic Cancer in the Omics Sciences Era.

Int J Mol Sci

CEMAD Centro Malattie dell'Apparato Digerente, Medicina Interna e Gastroenterologia, Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, 00168 Rome, Italy.

Published: July 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Pancreatic cancer (PC) is an increasing cause of cancer-related death, with a dismal prognosis caused by its aggressive biology, the lack of clinical symptoms in the early phases of the disease, and the inefficacy of treatments. PC is characterized by a complex tumor microenvironment. The interaction of its cellular components plays a crucial role in tumor development and progression, contributing to the alteration of metabolism and cellular hyperproliferation, as well as to metastatic evolution and abnormal tumor-associated immunity. Furthermore, in response to intrinsic oncogenic alterations and the influence of the tumor microenvironment, cancer cells undergo a complex oncogene-directed metabolic reprogramming that includes changes in glucose utilization, lipid and amino acid metabolism, redox balance, and activation of recycling and scavenging pathways. The advent of omics sciences is revolutionizing the comprehension of the pathogenetic conundrum of pancreatic carcinogenesis. In particular, metabolomics and genomics has led to a more precise classification of PC into subtypes that show different biological behaviors and responses to treatments. The identification of molecular targets through the pharmacogenomic approach may help to personalize treatments. Novel specific biomarkers have been discovered using proteomics and metabolomics analyses. Radiomics allows for an earlier diagnosis through the computational analysis of imaging. However, the complexity, high expertise required, and costs of the omics approach are the main limitations for its use in clinical practice at present. In addition, the studies of extracellular vesicles (EVs), the use of organoids, the understanding of host-microbiota interactions, and more recently the advent of artificial intelligence are helping to make further steps towards precision and personalized medicine. This present review summarizes the main evidence for the application of omics sciences to the study of PC and the identification of future perspectives.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11276793PMC
http://dx.doi.org/10.3390/ijms25147623DOI Listing

Publication Analysis

Top Keywords

omics sciences
12
conundrum pancreatic
8
pancreatic cancer
8
tumor microenvironment
8
understanding conundrum
4
omics
4
cancer omics
4
sciences era
4
era pancreatic
4
cancer increasing
4

Similar Publications

Wings apart-like protein (WAPL) has emerged as a key player in maintaining genome integrity through its regulation of cohesin dynamics, which govern chromatin architecture and gene expression. WAPL mainly acts as a cohesin release factor and ensures proper chromosomal segregation during mitosis by promoting sister chromatid resolution. Owing to its prominent role in cell biology, WAPL dysregulation can cause genomic instability and disrupt chromosomal cohesion, leading to diseases such as cancer.

View Article and Find Full Text PDF

Osteoarthritis (OA) is a multifactorial, mechano-inflammatory joint disorder characterized by cartilage degradation, synovial inflammation, and subchondral bone remodeling. Despite its high prevalence and significant impact on quality of life, no disease-modifying treatments have been approved. In many other disease areas, advanced omics technologies are impacting the development of advanced therapies.

View Article and Find Full Text PDF

The ectoparasitic honeybee (Apis mellifera) mite Tropilaelaps mercedesae represents a serious threat to Asian apiculture and a growing concern for global beekeeping due to its high reproductive capacity and host adaptability. However, the regulatory mechanisms underlying its host adaptation across life stages remain poorly characterized. Here, we performed integrated transcriptomic, proteomic, and metabolomic analyses of female mites at 4 key postembryonic developmental stages: protonymphs, deutonymphs, mature adults, and reproductive adults.

View Article and Find Full Text PDF

Single-cell omics reveal the mechanisms of traditional Chinese medicines.

Phytomedicine

August 2025

Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China. Electronic address:

Background: Traditional Chinese medicines (TCMs) have a long-standing history and diverse applications. However, their complex multi-component compositions and intricate mechanisms of action pose significant challenges for modern scientific investigation. Addressing these complexities requires advanced techniques capable of dissecting cellular and molecular interactions with high resolution.

View Article and Find Full Text PDF

Electrochemiluminescence (ECL) imaging through closed bipolar nanoelectrode arrays (BPnEAs) has emerged as a promising method for in situ label-free wide-field electrochemical imaging. In this study, a cathodic ECL system based on [Ru(bpz)]/SO is combined with the BPnEAs fabricated on silicon nitride membrane windows through focused ion beam nanofabrication, enabling effective bipolar imaging of heterogeneous anodic electrocatalytic reactions. The shape, distribution, size, and material composition of individual electrodes within the array can be precisely controlled.

View Article and Find Full Text PDF