Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Objectives: We aimed to construct an artificial intelligence-enabled electrocardiogram (ECG) algorithm that can accurately predict the presence of left atrial low-voltage areas (LVAs) in patients with persistent atrial fibrillation.

Methods: The study included 587 patients with persistent atrial fibrillation who underwent catheter ablation procedures between March 2012 and December 2023 and 942 scanned images of 12-lead ECGs obtained before the ablation procedures were performed. Artificial intelligence-based algorithms were used to construct models for predicting the presence of LVAs. The DR-FLASH and APPLE clinical scores for LVA prediction were calculated. We used a receiver operating characteristic (ROC) curve, calibration curve, and decision curve analysis to evaluate model performance.

Results: The data obtained from the participants were split into training (n = 469), validation (n = 58), and test sets (n = 60). LVAs were detected in 53.7% of all participants. Using ECG alone, the deep learning algorithm achieved an area under the ROC curve (AUROC) of 0.752, outperforming both the DR-FLASH score (AUROC = 0.610) and the APPLE score (AUROC = 0.510). The random forest classification model, which integrated a probabilistic deep learning model and clinical features, showed a maximum AUROC of 0.759. Moreover, the ECG-based deep learning algorithm for predicting extensive LVAs achieved an AUROC of 0.775, with a sensitivity of 0.816 and a specificity of 0.896. The random forest classification model for predicting extensive LVAs achieved an AUROC of 0.897, with a sensitivity of 0.862, and a specificity of 0.935.

Conclusion: The deep learning model based exclusively on ECG data and the machine learning model that combined a probabilistic deep learning model and clinical features both predicted the presence of LVAs with a higher degree of accuracy than the DR-FLASH and the APPLE risk scores.

Download full-text PDF

Source
http://dx.doi.org/10.1111/jce.16373DOI Listing

Publication Analysis

Top Keywords

deep learning
20
learning model
16
persistent atrial
12
artificial intelligence-enabled
8
intelligence-enabled electrocardiogram
8
left atrial
8
atrial low-voltage
8
low-voltage areas
8
atrial fibrillation
8
patients persistent
8

Similar Publications

Aim: The purpose of this study was to assess the accuracy of a customized deep learning model based on CNN and U-Net for detecting and segmenting the second mesiobuccal canal (MB2) of maxillary first molar teeth on cone beam computed tomography (CBCT) scans.

Methodology: CBCT scans of 37 patients were imported into 3D slicer software to crop and segment the canals of the mesiobuccal (MB) root of the maxillary first molar. The annotated data were divided into two groups: 80% for training and validation and 20% for testing.

View Article and Find Full Text PDF

Obsessive-compulsive disorder (OCD) is a chronic and disabling condition affecting approximately 3.5% of the global population, with diagnosis on average delayed by 7.1 years or often confounded with other psychiatric disorders.

View Article and Find Full Text PDF

Use of artificial intelligence for classification of fractures around the elbow in adults according to the 2018 AO/OTA classification system.

BMC Musculoskelet Disord

September 2025

Department of Clinical Sciences at Danderyds Hospital, Department of Orthopedic Surgery, Karolinska Institutet, Stockholm, 182 88, Sweden.

Background: This study evaluates the accuracy of an Artificial Intelligence (AI) system, specifically a convolutional neural network (CNN), in classifying elbow fractures using the detailed 2018 AO/OTA fracture classification system.

Methods: A retrospective analysis of 5,367 radiograph exams visualizing the elbow from adult patients (2002-2016) was conducted using a deep neural network. Radiographs were manually categorized according to the 2018 AO/OTA system by orthopedic surgeons.

View Article and Find Full Text PDF

Purpose: The study aims to compare the treatment recommendations generated by four leading large language models (LLMs) with those from 21 sarcoma centers' multidisciplinary tumor boards (MTBs) of the sarcoma ring trial in managing complex soft tissue sarcoma (STS) cases.

Methods: We simulated STS-MTBs using four LLMs-Llama 3.2-vison: 90b, Claude 3.

View Article and Find Full Text PDF

Ultra-fast charging stations (UFCS) present a significant challenge due to their high power demand and reliance on grid electricity. This paper proposes an optimization framework that integrates deep learning-based solar forecasting with a Genetic Algorithm (GA) for optimal sizing of photovoltaic (PV) and battery energy storage systems (BESS). A Gated Recurrent Unit (GRU) model is employed to forecast PV output, while the GA maximizes the Net Present Value (NPV) by selecting optimal PV and BESS sizes tailored to weekday and weekend demand profiles.

View Article and Find Full Text PDF