98%
921
2 minutes
20
Non-metal doping of titanium dioxide (TiO) has been widely investigated, because it can facilely improve the optical response of TiO under visible light excitation in environmental pollution treatments. In the ongoing efforts, however, little consideration has been given to the use of harmful marine organisms as dopants. Here, we employed the natural mucus proteins of the large harmful jellyfish and , which have frequently bloomed in East Asian marginal seas in recent decades, to synthesize mesoporous nitrogen-doped TiO nanocrystals modified with carbon (N-TiO/C) by a simple hydrothermal method. These nanocrystals were composed of predominantly anatase phase and a small amount of brookite phase TiO. Their mesoporous structures changed with the variation of the volume ratio of jellyfish mucus added to tetrabutyl titanate (TBT). At the same ratio, larger surface area and pore volume but smaller pore size were observed in N-TiO/C nanocrystals from rather than . Nitrogen was determinately doped into the lattice of the prepared nanocrystals and the carbon species were modified on their surfaces, which narrowed the band gap, facilitated the separation of photogenerated electron-hole pairs and favored the absorption of visible light, thus improving their visible light photocatalytic activity. The photocatalytic degradation efficiency of Rhodamine B (RhB) under visible light irradiation first increased and then decreased with the gradual increase of the volume ratio of jellyfish mucus proteins to TBT. The maximum reached 97.52% in 20 min from N-TiO/C nanocrystals synthesized using mucus at the volume ratio of 4 : 1, which showed a remarkably strong visible light absorption, lower band gap energy and smaller electron transfer resistance. These N-TiO/C nanocrystals also had a relatively stable crystal structure in multiple degradation reactions. The main active species including superoxide radicals (˙O ), photogenerated holes (h) and hydroxyl radicals (˙OH) were found to play a major role in the degradation process of RhB. This study highlights the potential high-value reapplication of harmful jellyfish mucus as a natural organic matrix in fabricating advanced materials with optimized functional properties.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11265576 | PMC |
http://dx.doi.org/10.1039/d4na00309h | DOI Listing |
J Cataract Refract Surg
September 2025
Ophthalmology Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy.
Purpose: To compare the usability and training effectiveness of a 3D-printed coaxial illumination system mounted on an off-the-shelf stereo-microscope to a professional ophthalmic surgical microscope, in cataract surgery simulation.
Setting: Ophthalmology Lab, Ophthalmology Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy.
Design: Prospective randomized crossover study.
J Org Chem
September 2025
Department of Chemistry and Biochemistry, The University of Tulsa, 800 S. Tucker Dr., Tulsa, Oklahoma 74104, United States.
A screening of organic dyes has led to the discovery of gallocyanine as an organocatalyst for the halogenation of a variety of functionalized pyrazoles, indazoles, and aromatics. This work provides an example of a mild organocatalyst that does not require light, oxidizing agents, transition-metal activation, or high temperatures. Thirty-nine halogenated pyrazoles and indazoles, including pharmaceuticals such as celecoxib, deracoxib, and antipyrine, have been isolated in good to excellent yields using -halosuccinimides as the stoichiometric halogen source with gallocyanine as the catalyst.
View Article and Find Full Text PDFTraffic Inj Prev
September 2025
School of Safety Engineering, Beijing Institute of Petrochemical Technology, Beijing, China.
Objective: To clarify the potential risks and causative mechanisms of glare from nighttime road fill lights on driving safety, this study investigates the dual interference of glare-induced visual cognitive load and physiological stress.
Methods: A field driving experiment involving 20 drivers was conducted, with real-time collection of visual data (e.g.
Annu Rev Pharmacol Toxicol
September 2025
1Department of Physiology and Pharmacology and Center for Molecular Medicine, Karolinska Institutet and University Hospital, Stockholm, Sweden; email:
In light of the success of blockbuster drugs for type 2 diabetes and obesity based on the GLP-1 hormone, drugmakers have concentrated their efforts on developing new and improved variations that address the route of administration, dosing, pathway selectivity, or polypharmacology. While some of these modifications have demonstrated improved efficacy in clinical studies and offered exciting opportunities for treating other diseases, drug-induced shifts to the conformational landscape of target receptors may have consequences for side effects. Our review summarizes advances in the understanding of the biochemistry, pharmacogenomics, and molecular pharmacology of incretins and their cognate receptors.
View Article and Find Full Text PDFTraffic Inj Prev
September 2025
Chongqing Jianzhu College, Chongqing, P.R. China.
Purpose: The monotonous lighting environment in extra-long tunnels often induces mind-wandering in drivers. To address this issue, this study explores effective strategies to optimize tunnel lighting environments by configuring various background colors and special lighting zones to enhance the alertness of young drivers and ensure driving safety.
Methods: A virtual driving simulator was utilized to carry out the experiment.