98%
921
2 minutes
20
Background: The evolution of coronary atherosclerotic heart disease (CAD) is intricately linked to alterations in the pericoronary adipose tissue (PCAT). In recent epochs, characteristics of the PCAT have progressively ascended as focal points of research in CAD risk stratification and individualized clinical decision-making. Harnessing radiomic methodologies allows for the meticulous extraction of imaging features from these adipose deposits. Coupled with machine learning paradigms, we endeavor to establish predictive models for the onset of major adverse cardiovascular events (MACE).
Purpose: To appraise the predictive utility of radiomic features of PCAT derived from coronary computed tomography angiography (CCTA) in forecasting MACE.
Methods: We retrospectively incorporated data from 314 suspected or confirmed CAD patients admitted to our institution from June 2019 to December 2022. An additional cohort of 242 patients from two external institutions was encompassed for external validation. The endpoint under consideration was the occurrence of MACE after a 1-year follow-up. MACE was delineated as cardiovascular mortality, newly diagnosed myocardial infarction, hospitalization (or re-hospitalization) for heart failure, and coronary target vessel revascularization occurring more than 30 days post-CCTA examination. All enrolled patients underwent CCTA scanning. Radiomic features were meticulously extracted from the optimal diastolic phase axial slices of CCTA images. Feature reduction was achieved through a composite feature selection algorithm, laying the groundwork for the radiomic signature model. Both univariate and multivariate analyses were employed to assess clinical variables. A multifaceted logistic regression analysis facilitated the crafting of a clinical-radiological-radiomic combined model (or nomogram). Receiver operating characteristic (ROC) curves, calibration, and decision curve analyses (DCA) were delineated, with the area under the ROC curve (AUCs) computed to gauge the predictive prowess of the clinical model, radiomic model, and the synthesized ensemble.
Results: A total of 12 radiomic features closely associated with MACE were identified to establish the radiomic model. Multivariate logistic regression results demonstrated that smoking, age, hypertension, and dyslipidemia were significantly correlated with MACE. In the integrated nomogram, which amalgamated clinical, imaging, and radiomic parameters, the diagnostic performance was as follows: 0.970 AUC, 0.949 accuracy (ACC), 0.833 sensitivity (SEN), 0.981 specificity (SPE), 0.926 positive predictive value (PPV), and 0.955 negative predictive value (NPV). The calibration curve indicated a commendable concordance of the nomogram, and the decision curve analysis underscored its superior clinical utility.
Conclusions: The integration of radiomic signatures from PCAT based on CCTA, clinical indices, and imaging parameters into a nomogram stands as a promising instrument for prognosticating MACE events.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/mp.17324 | DOI Listing |
J Neurooncol
September 2025
Department of Radiology, The Affiliated Hospital of Qingdao University, Qingdao, 266003, Shandong, China.
Rationale And Objectives: Double expression lymphoma (DEL) is an independent high-risk prognostic factor for primary CNS lymphoma (PCNSL), and its diagnosis currently relies on invasive methods. This study first integrates radiomics and habitat radiomics features to enhance preoperative DEL status prediction models via intratumoral heterogeneity analysis.
Materials And Methods: Clinical, pathological, and MRI imaging data of 139 PCNSL patients from two independent centers were collected.
Abdom Radiol (NY)
September 2025
Department of Radiology, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics and Gynecology and Pediatrics, Fujian Medical University, Fuzhou, China.
Background: We aimed to develop and validate a radiomics-based machine learning nomogram using multiparametric magnetic resonance imaging to preoperatively predict substantial lymphovascular space invasion in patients with endometrial cancer.
Methods: This retrospective dual-center study included patients with histologically confirmed endometrial cancer who underwent preoperative magnetic resonance imaging (MRI). The patients were divided into training and test sets.
Eur Radiol
September 2025
Quantitative Imaging Biomarkers in Medicine, Quibim, Valencia, Spain.
Objectives: In non-small cell lung cancer (NSCLC), non-invasive alternatives to biopsy-dependent driver mutation analysis are needed. We reviewed the effectiveness of radiomics alone or with clinical data and assessed the performance of artificial intelligence (AI) models in predicting oncogene mutation status.
Materials And Methods: A PRISMA-compliant literature review for studies predicting oncogene mutation status in NSCLC patients using radiomics was conducted by a multidisciplinary team.
Radiother Oncol
September 2025
Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD, USA. Electronic address:
Purpose: To predict metastasis-free survival (MFS) for patients with prostate adenocarcinoma (PCa) treated with androgen deprivation therapy (ADT) and external radiotherapy using clinical factors and radiomics extracted from primary tumor and node volumes in pre-treatment PSMA PET/CT scans.
Materials/methods: Our cohort includes 134 PCa patients (nodal involvement in 28 patients). Gross tumor volumes of primary tumor (GTVp) and nodes (GTVn) on CT and PET scans were segmented.
Radiother Oncol
September 2025
Department of Radiotherapy Center, 1st Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China; School of Basic Medical Science, Wenzhou Medical University, Wenzhou 325000, China. Electronic address:
Background: Accurate delineation of regions of interest (ROIs) is critical for feature extraction and selection in radiomics-based prediction models.
Purpose: To develop a combined dosiomics and deep learning (DL) model for predicting grade ≥ 2 radiation esophagitis (RE) in lung cancer patients undergoing radiotherapy, we propose a multi-task auxiliary learning approach to define accurate and objective ROIs based on radiation dose distribution (RDD) images.
Materials And Methods: Lung cancer patients who underwent radiotherapy were gathered retrospectively from hospital 1 (January 2020 and December 2022) for model development.