Observation of Fast Low-Temperature Oxygen Ion Conduction in CeO/β"-AlO Heterostructure.

Adv Sci (Weinh)

Key Laboratory of Semiconductor Photovoltaic Technology and Energy Materials of Inner Mongolia Autonomous Region, School of Physical Science and Technology, Inner Mongolia University, 235 West Daxue Street, Hohhot, Inner Mongolia, 010021, P. R. China.

Published: September 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Semiconductor ion fuel cells (SIFCs) have demonstrated impressive ionic conductivity and efficient power generation at temperatures below 600 °C. However, the lack of understanding of the ionic conduction mechanisms associated with composite electrolytes has impeded the advancement of SIFCs toward lower operating temperatures. In this study, a CeO/β″-AlO heterostructure electrolyte is introduced, incorporating β″-AlO and leveraging the local electric field (LEF) as well as the manipulation of the melting point temperature of carbonate/hydroxide (C/H) by Na and Mg from β″-AlO. This design successfully maintains swift interfacial conduction of oxygen ions at 350 °C. Consequently, the fuel cell device achieved an exceptional ionic conductivity of 0.019 S/cm and a power output of 85.9 mW/cm at 350 °C. The system attained a peak power density of 1 W/cm with an ultra-high ionic conductivity of 0.197 S/cm at 550 °C. The results indicate that through engineering the LEF and incorporating the lower melting point C/H, there approach effectively observed oxygen ion transport at low temperatures (350 °C), effectively overcoming the issue of cell failure at temperatures below 419 °C. This study presents a promising methodology for further developing high-performance semiconductor ion fuel cells in the low temperature range of 300-600 °C.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11425223PMC
http://dx.doi.org/10.1002/advs.202401130DOI Listing

Publication Analysis

Top Keywords

ionic conductivity
12
oxygen ion
8
semiconductor ion
8
ion fuel
8
fuel cells
8
melting point
8
observation fast
4
fast low-temperature
4
low-temperature oxygen
4
ion
4

Similar Publications

Intermetallic compounds belong to an important class of materials, not only due to the sheer number of compounds known but also due to their application in everyday life. These compounds possess their very own peculiarities, especially when it comes to chemical bonding. To address this point, bonding analyses based on Crystal Orbital Bond Index (COBI) values, Löwdin charges, and - for the first time - oxidation numbers (ON ) were conducted, all extracted from delocalized plane-wave functions.

View Article and Find Full Text PDF

The crystallization behavior of ionic liquids (ILs) 1-butyl-3-methylimidazolium [BMIM] hexafluorophosphate [PF] and chloride [Cl] is investigated upon confinement in 2.3 or 8.2 nm diameter silica nanopore arrays, along with the effects of covalently modifying the pore walls with 1-(3-trimethoxysilylpropyl)3-methylimidazolium [TMS-MIM] groups.

View Article and Find Full Text PDF

Two-dimensional van der Waals (2D-vdW) semiconducting ferroelectrics, such as CuInPSe (CIPSe) and CuInPS (CIPS), offer unique opportunities for lightweight, scalable, low-power nanoscale electronic devices. However, the limited pool of functional 2D-vdW ferroics highlights the need for clear design principles that can be used to guide experiments. Here, we use first-principles density functional theory (DFT) to study how isovalent atomistic substitution at In and P sites modifies structure, polarization, and electronic properties in CIPSe and CIPS.

View Article and Find Full Text PDF

Alkaline zinc-iron flow batteries (AZIFBs) are one of the promising aqueous redox chemistries for large-scale energy storage due to their intrinsic safety and low cost. However, the energy efficiency (EE) and power density of batteries with low-cost polybenzimidazole (PBI) membranes are still limited due to the relatively poor ionic conductivity of PBI in an alkaline medium. Here, this study proposes a novel chemical approach for regulating the chemical environment of the PBI membrane.

View Article and Find Full Text PDF

This study quantitatively evaluated the adsorption performance of natural bentonite for removing three dye classes-cationic (Basic dye: BEZACRYL RED GRL), anionic (Reactive dye: AVITERA LIGHT RED SE), and non-ionic (Disperse dye: BEMACRON BLUE HP3R) from synthetic textile wastewater. Batch adsorption experiments were conducted under varying conditions of contact time (15-90 min), adsorbent dosage (20-60 g L⁻), pH (4 and 12), and temperature (25-100 °C), with dye concentrations quantified by UV-Vis spectroscopy. At a contact time of 30 min and room temperature (25 °C), maximum removal efficiencies reached 99.

View Article and Find Full Text PDF