98%
921
2 minutes
20
Precision medicine should aspire to reduce error and improve accuracy in medical and health recommendations by comparison with contemporary practice, while maintaining safety and cost-effectiveness. The etiology, clinical manifestation and prognosis of diseases such as obesity, diabetes, cardiovascular disease, kidney disease and fatty liver disease are heterogeneous. Without standardized reporting, this heterogeneity, combined with the diversity of research tools used in precision medicine studies, makes comparisons across studies and implementation of the findings challenging. Specific recommendations for reporting precision medicine research do not currently exist. The BePRECISE (Better Precision-data Reporting of Evidence from Clinical Intervention Studies & Epidemiology) consortium, comprising 23 experts in precision medicine, cardiometabolic diseases, statistics, editorial and lived experience, conducted a scoping review and participated in a modified Delphi and nominal group technique process to develop guidelines for reporting precision medicine research. The BePRECISE checklist comprises 23 items organized into 5 sections that align with typical sections of a scientific publication. A specific section about health equity serves to encourage precision medicine research to be inclusive of individuals and communities that are traditionally under-represented in clinical research and/or underserved by health systems. Adoption of BePRECISE by investigators, reviewers and editors will facilitate and accelerate equitable clinical implementation of precision medicine.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/s41591-024-03033-3 | DOI Listing |
Neurotherapeutics
September 2025
Department of Neurology, Peking University Third Hospital, Beijing, 100191, China; Beijing Key Laboratory of Biomarker and Translational Research in Neurodegenerative Diseases, Beijing, 100191, China; Key Laboratory for Neuroscience, National Health Commission/Ministry of Education, Peking Universit
Extensive research has confirmed that omega-3 fatty acids provide cardiovascular protection primarily by activating the G protein-coupled receptor 120 (GPR120) signaling pathway. However, natural activators of this receptor often lack sufficient strength and precision. TUG-891, a recently synthesized selective GPR120 activator, has displayed significant therapeutic potential in multiple disease.
View Article and Find Full Text PDFAnal Chim Acta
November 2025
Department of Clinical Laboratory Medicine, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, PR China.
Background: A DNA barcode is a short DNA fragment used to classify and identify specific organisms, taking advantage of the specificity and diversity inherent in biological molecules. Since Herbert introduced the concept in 2003, DNA barcoding has been increasingly used in precision medicine and related fields, including species identification and environmental monitoring, over the past few decades. Although numerous molecular diagnostic techniques have emerged, many face notable obstacles such as sensitivity to handling conditions, high expenses, and limitations in accuracy.
View Article and Find Full Text PDFBest Pract Res Clin Haematol
September 2025
Division of Hematology Oncology, Department of Medicine, Massachusetts General Hospital, Boston, USA. Electronic address:
Korean J Anesthesiol
February 2025
Department of Anesthesiology and Pain Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea.
Background: The interpectoral and pectoserratus plane (PECs) blocks have been reported to provide favorable postoperative analgesia after mastectomy. However, studies have reported controversial data regarding its effect on the quality of recovery (QoR). We aimed to evaluate the effect of the PECs block in light of baseline psychological factors and pain sensitivity.
View Article and Find Full Text PDFBone Jt Open
September 2025
School of Medicine, University of Nottingham, Nottingham, UK.
Aims: The number of hip fractures is increasing, with significant mortality and morbidity, particularly among frail and comorbid patients. Enhanced recovery after surgery (ERAS) pathways have proven effective in elective orthopaedics, but this has not been investigated in people with hip fractures. This study aimed to identify current perioperative practice and develop a cohesive ERAS pathway tailored for hip fracture patients, to standardize and optimize care.
View Article and Find Full Text PDF