98%
921
2 minutes
20
Fluxapyroxad (FX), a typical succinate dehydrogenase inhibitor fungicide, is causing increased global concerns due to its fungicide effects. However, the accumulation and grow toxicity of FX to Litopenaeus vannamei (L. vannamei) is poorly understand. Therefore, the accumulation pattern of FX in L. vannamei was investigated for the first time in environmental concentrations. FX accumulated rapidly in shrimp muscle. Meanwhile, growth inhibition was observed and the mechanism derived by primarily accelerated glycolipid metabolism and reduced glycolipid content. Moreover, exposure to environmental concentrations of FX induced significant growth inhibition and oxidative stress and inhibited oxidative phosphorylation and TCA cycle in L. vannamei. The endocytosis signaling pathway genes were activated, thereby driving growth toxicity. Oxidative phosphorylation and cytosolic gene expression were further rescued in elimination experiments, demonstrating the mechanism of growth toxicity by FX exposure. The results revealed that FX persistently altered the gut microbiome of L. vannamei using gut microbiome sequencing, particularly with increased Garcinia Purple Pseudoalteromonas luteoviolacea for organic pollutant degradation. This study provided new insights into the potential toxicity of FX to marine organisms, emphasizing the need for further investigation and potential regulatory considerations.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jhazmat.2024.135206 | DOI Listing |
Anal Methods
September 2025
Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia.
Avapritinib (Ayvakit™) is a highly selective inhibitor of the platelet-derived growth factor receptor alpha (PDGFRA), including D842V mutations. Avapritinib (APB) is authorized in the United States for individuals with metastatic or unresectable gastrointestinal stromal tumors (GISTs). APB is considered the exclusive therapy for adults with indolent systemic mastocytosis.
View Article and Find Full Text PDFAnticancer Agents Med Chem
September 2025
Department of Medical Oncology, Yan'an People's Hospital, Yan'an, 716000, China.
Introduction: Copper complexes, as endogenous metals, have potential in cancer therapy, addressing issues associated with cisplatin. Since cisplatin uses Copper Transporter 1 (CTR1) for cellular entry, copper complexes may utilize this pathway to enhance transport efficiency.
Methods: The Cu/Na dipicolinic acid complex was synthesized to assess its cytotoxicity, induction of apoptosis, drug resistance, and inflammation in cancerous and normal lung cells.
Future Oncol
September 2025
Division of Leukemia, Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.
Philadelphia chromosome-positive acute lymphoblastic leukemia (Ph+ ALL) is characterized by the fusion gene which produces a constitutively active tyrosine kinase which drives disease pathogenesis and is associated with resistance to conventional chemotherapy. Intensive cytotoxic chemotherapy followed by allogeneic hematopoietic stem cell transplantation (HSCT), the historical treatment paradigm for Ph+ ALL, was associated with poor outcomes. The introduction of inhibitors of ABL1 revolutionized the treatment of Ph+ ALL.
View Article and Find Full Text PDFPhytomedicine
August 2025
Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany. Electronic address:
Background: Non-small-cell lung cancer NSCLC is the major diagnosed type of lung cancers in the USA and Europe. It is generally related to poor prognosis and low rates of survival. Oleandrin is a cardiac glycoside occurring naturally in Nerium oleander (Apocynaceae).
View Article and Find Full Text PDFAdv Mater
September 2025
Key Laboratory for Experimental Teratology of Ministry of Education, Key Laboratory of Infection and Immunity of Shandong Province and Department of Immunology, School of Basic Medical Sciences, Cheeloo Medical College of Shandong University, Shandong University, Jinan, Shandong, 250012, China.
Natural killer (NK) cells can swiftly and efficiently kill tumor cells with low toxicity and show great potential as anticancer agents. However, the hostile tumor microenvironment (TME) reduces the number and functionality of NK cells, leading to tumor progression and the limited therapeutic effect of adoptively transferred NK cells, especially in solid tumors. Here, via mussel-inspired chemistry and targeted antibody modification strategies, functional piezoelectric nanoparticles are designed to target NK cells, named as αCD56-P@BT (for human) or αNK1.
View Article and Find Full Text PDF