98%
921
2 minutes
20
Acute and chronic inflammation are common in patients with end-stage kidney disease (ESKD). So, the adsorption of pro-inflammatory cytokines by the hollow fiber of the dialysis membrane has been expected to modify the inflammatory dysregulation in ESKD patients. However, it remains to be determined in detail what molecules of fiber materials can preferably adsorb proteins from the circulating circuit. We aimed this study to analyze directly the adsorbed proteins in the polymethyl methacrylate (PMMA) and polyethersulfone (PES) membranes in patients on predilution online hemodiafiltration (OL-HDF). To compare the adsorbed proteins in the PMMA and PES hemodiafilters membrane, we initially performed predilution OL-HDF using the PES (MFX-25Seco) membrane while then switched to the PMMA (PMF™-A) membrane under the same condition in three patients. We extracted proteins from the collected hemodiafilters by extraction, then SDS-PAGE of the extracted sample, protein isolation, in-gel tryptic digestion, and nano-LC MS/MS analyses. The concentrations of adsorbed proteins from the PMMA and PES membrane extracts were 35.6±7.9 μg/μL and 26.1±9.2 μg/μL. SDS-PAGE analysis revealed distinct variations of adsorbed proteins mainly in the molecular weight between 10 to 25 kDa. By tryptic gel digestion and mass spectrometric analysis, the PMMA membrane exhibited higher adsorptions of β2 microglobulin, dermcidin, retinol-binding protein-4, and lambda-1 light chain than those from the PES membrane. In contrast, amyloid A-1 protein was adsorbed more potently in the PES membrane. Western blot analyses revealed that the PMMA membrane adsorbed interleukin-6 (IL-6) approximately 5 to 118 times compared to the PES membrane. These findings suggest that PMMA-based OL-HDF therapy may be useful in controlling inflammatory status in ESKD patients.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11259279 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0299757 | PLOS |
Fungal Biol
October 2025
Key Laboratory of Bio-resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, China; Key Laboratory of Environment Protection, Soil ecological protection and pollution control, Sichuan University & Department of Ecology and Envir
Cadmium (Cd) contamination in edible fungi poses a significant threat to food safety. However, targeted strategies to regulate Cd uptake and enhance Cd stress tolerance in Morchella sextelata remain largely unexplored. Given that M.
View Article and Find Full Text PDFJ Biosci Bioeng
September 2025
Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama 700-8530, Japan.
Blood purification using immunoadsorbent columns is a therapeutic strategy for removing pathogenic autoantibodies in autoimmune diseases. Currently available columns have limitations: Trp/Phe columns offer cost-effectiveness and sterilizability, but lack antigen specificity and have limited capacity to remove diverse pathogenic autoantibodies; whereas Protein A/peptide/anti-human IgG columns target all antibodies, regardless of pathogenicity, limiting specificity, and often require sterile production due to low stability under sterilization conditions, except for peptide ligands. Full-length autoantigen-immobilized immunoadsorbent columns have great potential to specifically adsorb targeted autoantibodies, because autoantibodies recognize diverse epitopes that vary among individuals.
View Article and Find Full Text PDFCarbohydr Polym
November 2025
College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, Wuhan University, Wuhan 430072, China. Electronic address:
Hemoperfusion is one of the most effective blood purification techniques to quickly remove bilirubin from the blood of patients with kidney or liver failure. Although numerous adsorbent materials with high adsorption capacity have been developed, their clinical application are still limited due to poor biocompatibility and biosafety issues. Herein, biocompatible core-shell structured adsorbents with cellulose microspheres (CMs) as the supporting core and phase-transformed lysozyme (PTL) as the functional shell are fabricated for the removal of bilirubin in hemoperfusion.
View Article and Find Full Text PDFCarbohydr Polym
November 2025
State Key Laboratory of Advanced Fiber Materials (Donghua University), Shanghai 201620, China; College of Biological Science and Medical Engineering, Donghua University, No. 2999 North Renmin Road, Shanghai 201620, China; Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Med
Small-caliber artificial blood vessels are highly demanded and face challenges, including thrombosis and intimal hyperplasia. The excellent properties of bacterial nanocellulose (BNC) make it an excellent material for preparing artificial blood vessels. Heparin (Hep)-loaded silk fibroin microparticles (SFMPs) were synthesized in situ within the conduit wall via liquid pressure injection and phase separation, aiming to improve BNC's anticoagulant properties.
View Article and Find Full Text PDFIn this letter, the pull-off forces of adsorbed films of four Bap1-inspired peptides in various solvents were investigated on negatively charged mica substrates using the surface forces apparatus (SFA), complemented with dynamic light scattering (DLS) for characterizing the aggregation behavior of peptides in solution. Bap1-inspired peptides consisted of the 57 amino acid wild-type sequence (WT); a scrambled version of the WT used to investigate the impact of the primary amino acid sequence in pull-off forces (Scr); a ten amino acid sequence rich in hydrophobic content (CP) of the WT sequence, and an eight amino acid sequence (Sh1) that corresponds to the pseudo-repeating sequence in the 57 AA. SFA results showed remarkable pull-off forces for CP, particularly in the presence of salts: measured pull-off forces were 26.
View Article and Find Full Text PDF