Crystal structure and characterization of monascin from the extracts of Monascus purpureus-fermented rice.

Acta Crystallogr C Struct Chem

School of New Energy Materials and Chemistry, Leshan Normal University, Leshan, Sichuan 614000, People's Republic of China.

Published: August 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

We present a novel solid form of monascin, an azaphilonoid derivative extracted from Monascus purpureus-fermented rice. The crystal structure, CHO, was characterized by single-crystal X-ray diffraction and belongs to the orthorhombic space group P222. To gain insight into the electronic properties of the short contacts in the crystalline state of monascin, we utilized the Experimental Library of Multipolar Atom Model 2 (ELMAM2) database to transfer the electron density of monascin in its crystalline state. Hirshfeld surface analysis, fingerprint analysis, electronic properties and energetic characterization reveal that intermolecular C-H...O hydrogen bonds play a crucial role in the noncovalent bonding interactions by connecting molecules into two- and three-dimensional networks. The molecular electrostatic potential (MEP) map of the monascin molecule demonstrates that negatively charged regions located at four O atoms are favoured binding sites for more positively charged amino acid residues during molecular recognition. In addition, powder X-ray diffraction confirms that no transformation occurs during the crystallization of monascin.

Download full-text PDF

Source
http://dx.doi.org/10.1107/S2053229624006788DOI Listing

Publication Analysis

Top Keywords

crystal structure
8
monascus purpureus-fermented
8
purpureus-fermented rice
8
x-ray diffraction
8
electronic properties
8
crystalline state
8
monascin
6
structure characterization
4
characterization monascin
4
monascin extracts
4

Similar Publications

Scalable Solvent-Free Synthesis of a Linear Heteroaromatic Trimer with Crystallization-Induced Phosphorescence.

Org Lett

September 2025

Guangdong Basic Research Center of Excellence for Aggregate Science, School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China.

The polymerization mechanism and the identification of key oligomer intermediates during the thermal condensation of benzoguanamine (BG) remain unclear. Herein, we report a novel mixed thermal condensation strategy using BG and a pre-synthesized dimer to selectively synthesize the trimer (BG) with a significantly enhanced yield. Comprehensive characterization techniques confirm the formation of a linear molecular structure for (BG).

View Article and Find Full Text PDF

Achieving high performance nanoscale photonic functionalities remains extraordinarily challenging when using naturally derived biomaterials. The ability to manipulate ultrathin films of structural proteins─combined with photolithographic control of their polymorphism─unlocks a compelling route toward engineering biopolymer-based photonic crystals with precisely defined photonic bandgaps and reconfigurable structural colors. In this work, we describe a robust, water-based fabrication process for silk/inorganic hybrid one-dimensional (1D) photonic crystals that overcomes many of the conventional difficulties in ensuring reproducibility, uniformity, and reliability at the nanoscale.

View Article and Find Full Text PDF

Synthesis, Crystal Analyses, and Chiroptical Properties of Coumarin-Containing Helicenes.

Org Lett

September 2025

College of Chemistry and Materials Science, Key Laboratory of Chemical Biology of Hebei Province, Hebei University, Baoding, Hebei 071002, P. R. China.

Four novel coumarin-containing arenes bearing a [5]/[6]helicene unit (, , , and ) have been readily synthesized and structurally verified by X-ray crystallographic analysis. The chiral resolution of molecules , , and has enabled a detailed investigation of their chiroptical properties and the kinetics of enantiomerization, manifesting that the [6]helicenes and exhibit a more enhanced chiroptical response compared to [5]helicene .

View Article and Find Full Text PDF

Encapsulation of non-noble bimetallic nanoparticles within a zeolite framework can improve the stability and accessibility of active sites, but the single microporous structure and poor metal stability decreased the catalytic performance of the catalyst. Here, 3D hierarchical ZSM-5 zeolite encapsulated NiCo nanoparticles (NiCo@3DHZ5) were synthesized by Bottom-up confined steam-assisted crystallization (SAC) one-pot hydrothermal method and applied to the hydrodeoxygenation of vanillin. A series of characterizations showed that highly stable alloyed NiCo nanoparticles were encapsulated in a framework of 3DHZ5, the strong metal-zeolite interactions resulted in highly dispersed NiCo nano-alloys facilitated hydrogen adsorption and spillover of active hydrogen atoms, and the 3D hierarchical structure promoted oxygenated substrate diffusion, the synergy interaction between the alloy particles confined in the 3DHZ5 pores and the acidic sites on the zeolite surface promoted the selective conversion of vanillin.

View Article and Find Full Text PDF

Whole-process biomimetic synthesis of melanin-like amino acid surfactants by 2-iodoxybenzoic acid mediated regioselective oxidation of pterostilbene.

Food Chem

September 2025

Department of Pharmaceutical and Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, China. Electronic address:

Amino acid surfactants have garnered increasing attention as green and safe alternatives. Bioinspired by the melanogenesis pathway, this study developed a novel melanin-like amino acid surfactant with a melanin mimetic structure by conjugating glycine to o-quinone. Pterostilbene, a versatile natural monophenol, was oxidized to form o-quinone crystals by 2-iodoxybenzoic acid in a manner analogous to tyrosinase.

View Article and Find Full Text PDF