98%
921
2 minutes
20
The visual field of a bird defines the amount of information that can be extracted from the environment around it, using the eyes. Previous visual field research has left large phylogenetic gaps, where tropical bird species have been comparatively understudied. Using the ophthalmoscopic technique, we measured the visual fields of seven tropical seabird species, to understand what are the primary determinants of their visual fields. The visual field topographies of the seven seabird species were relatively similar, despite the two groups of Terns (Laridae) and Shearwaters (Procellariidae) being phylogenetically distant. We propose this similarity is due to their largely similar foraging ecology. These findings support previous research that foraging ecology rather than relatedness is the key determining factor behind a bird's visual field topography. Some bird species were identified to have more limited binocular fields, such as Brown Noddies (Anous stolidus) where binocularity onsets lower down within the visual field, resulting in a larger blind area about the head.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11254976 | PMC |
http://dx.doi.org/10.1007/s00114-024-01926-4 | DOI Listing |
Anal Chim Acta
November 2025
Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Materials Science, Hebei University, Baoding, 071002, PR China; Engineering Research Center of Ecological Safety and Conservation in Beijing-Tianjin-Hebei (Xiong'an New Area) of Ministry of Education, Bao
Background: In the contemporary era of rapid digital advancement, information security is closely associated with our daily life. From personal information to state secrets, all domains are intricately linked with information. Consequently, the significance of information security has garnered growing attention from an ever-increasing number of individuals.
View Article and Find Full Text PDFJ Photochem Photobiol B
September 2025
The First Affiliated Hospital, Department of Ophthalmology, Hengyang Medical school, University of South China, Hengyang, Hunan 421001, China; Xiamen University Affiliated Xiamen Eye Center, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center
Blue light, defined as short-wavelength visible light ranging from 400 to 500 nm, is recognized for its high energy within the visible light spectrum. The prevalent use of light-emitting diodes (LEDs) has significantly increased exposure to blue light. Corneal endothelial cells (CECs) playing a crucial role in maintaining corneal transparency to get clear visual field.
View Article and Find Full Text PDFOphthalmol Glaucoma
September 2025
Glaucoma Center of Excellence, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA. Electronic address:
Purpose: To assess the clinical outcomes of Hydrus Microstent implantation with cataract extraction for the treatment of open angle glaucoma (OAG) over a maximum of 4 years.
Design: Retrospective, single-center, single-arm, longitudinal cohort study.
Subjects: 308 patients (464 eyes) with OAG who underwent Hydrus Microstent implantation with cataract extraction between February 2019 and December 2021, followed for a median (interquartile range, IQR) of 2.
JMIR Med Inform
September 2025
Department of Ophthalmology, University of Pittsburgh School of Medicine, 1622 Locust Street, 5th floor, Pittsburgh, PA, 15219, United States, 1 412-642-5382.
Background: Transportation insecurity is a known barrier to accessing eye care and is associated with poorer visual outcomes for patients. However, its mention is seldom captured in structured data fields in electronic health records, limiting efforts to identify and support affected patients. Free-text clinical documentation may more efficiently capture information on transportation-related challenges than structured data.
View Article and Find Full Text PDFNat Commun
September 2025
Computational Science and Technology, KTH Royal Institute of Technology, Stockholm, Sweden.
Biological nervous systems constitute important sources of inspiration towards computers that are faster, cheaper, and more energy efficient. Neuromorphic disciplines view the brain as a coevolved system, simultaneously optimizing the hardware and the algorithms running on it. There are clear efficiency gains when bringing the computations into a physical substrate, but we presently lack theories to guide efficient implementations.
View Article and Find Full Text PDF