98%
921
2 minutes
20
Unlabelled: Mechanistic investigations are of paramount importance in elucidating the modes of action of antibiotics and facilitating the discovery of novel drugs. We reported a luciferase-based reporter system using bacterial cells to unveil mechanisms of antimicrobials targeting transcription and translation. The reporter gene encoding NanoLuciferase (NanoLuc) was integrated into the genome of the Gram-positive model organism, , to generate a reporter strain BS2019. Cellular transcription and translation levels were assessed by quantifying the amount of mRNA as well as the luminescence catalyzed by the enzyme NanoLuc. We validated this system using three known inhibitors of transcription (rifampicin), translation (chloramphenicol), and cell wall synthesis (ampicillin). The reporter strain BS2019 successfully revealed a decline in expression by rifampicin and NanoLuc enzyme activity by chloramphenicol, while ampicillin produced no observable effect. The assay was employed to characterize a previously discovered bacterial transcription inhibitor, CUHK242, with known antimicrobial activity against drug-resistant . Production of mRNA in our reporter BS2019 was suppressed in the presence of CUHK242, demonstrating the usefulness of the construct, which provides a simple way to study the mechanism of potential antibiotic candidates at early stages of drug discovery. The reporter system can also be modified by adopting different promoters and reporter genes to extend its scope of contribution to other fields of work.
Importance: Discovering new classes of antibiotics is desperately needed to combat the emergence of multidrug-resistant pathogens. To facilitate the drug discovery process, a simple cell-based assay for mechanistic studies is essential to characterize antimicrobial candidates. In this work, we developed a luciferase-based reporter system to quantify the transcriptional and translational effects of potential compounds and validated our system using two currently marketed drugs. Reporter strains generated in this study provide readily available means for identifying bacterial transcription inhibitors as prospective novel antibacterials. We also provided a series of plasmids for characterizing promoters under various conditions such as stress.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11337827 | PMC |
http://dx.doi.org/10.1128/aem.00717-24 | DOI Listing |
Anal Chem
September 2025
Jiaxing Key Laboratory of Molecular Recognition and Sensing, College of Biological and Chemical Engineering, Jiaxing University, Jiaxing 314001, China.
Despite the promise of electrochemical biosensors in amplified nucleic acid diagnostics, existing high-sensitivity platforms often rely on a multilayer surface assembly and cascade amplification confined to the electrode interface. These stepwise strategies suffer from inefficient enzyme activity, poor mass transport, and inconsistent probe orientation, which compromise the amplification efficiency, reproducibility, and practical applicability. To address these limitations, we report a programmable dual-phase electrochemical biosensing system that decouples amplification from signal transduction.
View Article and Find Full Text PDFAppl Biochem Biotechnol
September 2025
State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China.
Marine-derived enzymes often show distinct physiological properties and great potential for industrial use. Salt ions may improve the stability and expression efficiency of marine enzymes, which requires salt-resistant host based expression platform. Aspergillus oryzae of good protein expression and secretion was evaluated and explored for this purpose.
View Article and Find Full Text PDFFASEB J
September 2025
Department of Hematology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, People's Republic of China.
Epilepsy is a common chronic nervous system disease that threatens human health. However, the role of FOXC1 and its relations with pyroptosis have not been fully studied in epilepsy. Sprague-Dawley rats were obtained for constructing temporal lobe epilepsy (TLE) models.
View Article and Find Full Text PDFBrain
September 2025
Okinawa Institute of Science and Technology Graduate University, Okinawa, 904-0495, Japan.
Animal models of the pathology of Parkinson's disease (PD) have provided most of the treatments to date, but the disease is restricted to human patients. In vitro models using human pluripotent stem cells (hPSCs)-derived neural organoids have provided improved access to study PD etiology. This study established a method to generate human striatal-midbrain assembloids (hSMAs) from hPSCs for modeling alpha-synuclein (α-syn) propagation and recapitulating basal ganglia circuits, including nigrostriatal and striatonigral pathways.
View Article and Find Full Text PDFBiosens Bioelectron
September 2025
Department of Biological Sciences, Faculty of Science, National University of Singapore, 117543, Singapore; Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 117597, Singapore; Precision Medicine Translational Research Programme (TRP), Yong Loo Lin School
DNAzymes possessing kinase-like activities have long held theoretical promise, yet their practical implementation has remained significantly limited. Notably, DNAzyme kinase 1 (DK1), discovered over two decades ago, exhibits a unique self-phosphorylation capability upon encountering specific substrates like ATP, but its broad-based and programmable applications have not yet been fully realized. In this study, we innovatively couple DK1's autophosphorylation mechanism with the PfAgo to establish a novel programmable cascade sensing platform named RASTEN (Robust pfAgo-based Strategy for POC Testing Non-nucleic Acid and Nucleic Acid).
View Article and Find Full Text PDF