98%
921
2 minutes
20
Tilletia indica Mitra causes Karnal bunt (KB) in wheat by pathogenic dikaryophase. The present study is the first to provide the draft genomes of the dikaryon (PSWKBGD-3) and its two monosporidial lines (PSWKBGH-1 and 2) using Illumina and PacBio reads, their annotation and the comparative analyses among the three genomes by extracting polymorphic SSR markers. The trancriptome from infected wheat grains of the susceptible wheat cultivar WL711 at 24 h, 48h, and 7d after inoculation of PSWKBGH-1, 2 and PSWKBGD-3 were also isolated. Further, two transcriptome analyses were performed utilizing T. indica transcriptome to extract dikaryon genes responsible for pathogenesis, and wheat transcriptome to extract wheat genes affected by dikaryon involved in plant-pathogen interaction during progression of KB in wheat. A total of 54, 529, and 87 genes at 24hai, 48hai, and 7dai, respectively were upregulated in dikaryon stage while 21, 35, and 134 genes of T. indica at 24hai, 48hai, and 7dai, respectively, were activated only in dikaryon stage. While, a total of 23, 17, and 52 wheat genes at 24hai, 48hai, and 7dai, respectively were upregulated due to the presence of dikaryon stage only. The results obtained during this study have been compiled in a web resource called TiGeR ( http://backlin.cabgrid.res.in/tiger/ ), which is the first genomic resource for T. indica cataloguing genes, genomic and polymorphic SSRs of the three T. indica lines, wheat and T. indica DEGs as well as wheat genes affected by T. indica dikaryon along with the pathogenecity related proteins of T. indica dikaryon during incidence of KB at different time points. The present study would be helpful to understand the role of dikaryon in plant-pathogen interaction during progression of KB, which would be helpful to manage KB in wheat, and to develop KB-resistant wheat varieties.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11251232 | PMC |
http://dx.doi.org/10.1186/s12870-024-04959-z | DOI Listing |
Genome Biol
September 2025
Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 100101, Beijing, China.
Background: Centromeres are crucial for precise chromosome segregation and maintaining genome stability during cell division. However, their evolutionary dynamics, particularly in polyploid organisms with complex genomic architectures, remain largely enigmatic. Allopolyploid wheat, with its well-defined hierarchical ploidy series and recent polyploidization history, serves as an excellent model to explore centromere evolution.
View Article and Find Full Text PDFBMC Plant Biol
September 2025
Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka, 72388, Saudi Arabia.
Drought stress affects plant growth and production. To cope with drought stress, plants induced physiological and metabolic changes, serving as a protective approach under drought-stress conditions. The response to drought can vary based on plant type (C3 vs.
View Article and Find Full Text PDFPlant Sci
September 2025
Fermentation and Phytofarming Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur-176061, Himachal Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India. Electronic address:
Auxin, one of the earliest recognized and extensively investigated phytohormones, is crucial in plant growth and survival in adverse environmental conditions. Two gene families primarily regulate auxin signaling: auxin response factors (ARFs) and auxin/indole-3-acetic acid (Aux/IAA). Aux/IAA family proteins are recognized as essential elements of the nuclear auxin signaling system, inhibiting gene transcription in their presence and facilitating gene activation upon their degradation.
View Article and Find Full Text PDFJ Hazard Mater
September 2025
Department of Botany, Jamia Hamdard, New Delhi 110062, India. Electronic address:
Lanthanum (La), being one of the crucial rare earth elements (REEs), plays an explicit role in agriculture as fertilizer. Due to its hormetic response, it exhibits dualistic behaviour in Triticum aestivum (wheat) plants. Abscisic acid (ABA) is a key plant hormone regulating various physiological and metabolomic responses in plants, but the interaction between La and ABA remains unclear.
View Article and Find Full Text PDFTalanta
September 2025
Warsaw University of Technology, Faculty of Chemistry, Chair of Analytical Chemistry, Noakowskiego St. 3, 00-664, Warsaw, Poland. Electronic address:
The contamination of agricultural soils with military-grade explosives such as 2,4,6-trinitrotoluene (TNT), 1,3,5-trinitro-1,3,5-triazaccyclohexane (RDX) and 1,3,5,7-tetranitro-1,3,5,7-tetraazacyclohexane (HMX) is an emerging concern in post-conflict regions, where food crops may take up these compounds. This study presents a novel analytical approach for detecting explosive residues in wheat (Triticum aestivum L.) grown on contaminated substrates.
View Article and Find Full Text PDF