Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Metabolic reprogramming is a hallmark of cancer and is crucial for cancer progression, making it an attractive therapeutic target. Understanding the role of metabolic reprogramming in cancer initiation could help identify prevention strategies. To address this, we investigated metabolism during acinar-to-ductal metaplasia (ADM), the first step of pancreatic carcinogenesis. Glycolytic markers were elevated in ADM lesions compared with normal tissue from human samples. Comprehensive metabolic assessment in three mouse models with pancreas-specific activation of KRAS, PI3K, or MEK1 using Seahorse measurements, nuclear magnetic resonance metabolome analysis, mass spectrometry, isotope tracing, and RNA sequencing analysis revealed a switch from oxidative phosphorylation to glycolysis in ADM. Blocking the metabolic switch attenuated ADM formation. Furthermore, mitochondrial metabolism was required for de novo synthesis of serine and glutathione (GSH) but not for ATP production. MYC mediated the increase in GSH intermediates in ADM, and inhibition of GSH synthesis suppressed ADM development. This study thus identifies metabolic changes and vulnerabilities in the early stages of pancreatic carcinogenesis. Significance: Metabolic reprogramming from oxidative phosphorylation to glycolysis mediated by MYC plays a crucial role in the development of pancreatic cancer, revealing a mechanism driving tumorigenesis and potential therapeutic targets. See related commentary by Storz, p. 2225.

Download full-text PDF

Source
http://dx.doi.org/10.1158/0008-5472.CAN-23-2213DOI Listing

Publication Analysis

Top Keywords

metabolic reprogramming
16
pancreatic carcinogenesis
12
step pancreatic
8
acinar-to-ductal metaplasia
8
oxidative phosphorylation
8
phosphorylation glycolysis
8
metabolic
7
adm
6
reprogramming initial
4
initial step
4

Similar Publications

Cadmium (Cd) is a heavy metal that exhibits strong carcinogenic properties and promotes breast cancer (BC) progression. Autophagic flux dysfunction is involved in Cd-induced BC progression, but the underlying molecular mechanisms remain unclear. Here, it is observed that impaired autophagic flux and metabolic reprogramming are notable features related to Cd-induced proliferation, migration, and invasion in BC cell lines, including T-47D and MCF-7 cells.

View Article and Find Full Text PDF

Background: The clinical differentiation between obstetric antiphospholipid syndrome (OAPS) and undifferentiated connective tissue disease (UCTD) presents significant diagnostic challenges. This study employs metabolomics to investigate metabolic reprogramming patterns in OAPS and UCTD, aiming to identify potential biomarkers for early diagnosis.

Methods: Using LC-MS-based metabolomics, we analyzed serum profiles from 40 OAPS patients (B1), 30 OAPS + UCTD patients (B2), 27 UCTD patients (B3), and 30 healthy controls (A1).

View Article and Find Full Text PDF

Organelle stresses and energetic metabolisms promote endothelial-to-mesenchymal transition and fibrosis via upregulating FOSB and MEOX1 in Alzheimer's disease.

Front Mol Neurosci

August 2025

Department of Cardiovascular Sciences, Lewis Katz School of Medicine, Lemole Center for Integrated Lymphatics and Vascular Research, Temple University, Philadelphia, PA, United States.

Introduction: Endothelial-to-mesenchymal transition (EndoMT), cell death, and fibrosis are increasingly recognized as contributing factors to Alzheimer's disease (AD) pathology, but the underlying transcriptomic mechanisms remain poorly defined. This study aims to elucidate transcriptomic changes associated with EndoMT, diverse cell death pathways, and fibrosis in AD using the 3xTg-AD mouse model.

Methods: Using RNA-seq data and knowledge-based transcriptomic analysis on brain tissues from the 3xTg-AD mouse model of AD.

View Article and Find Full Text PDF

Background: Feline panleukopenia, caused by the highly lethal feline parvovirus (FPV), lacks effective prevention and treatment strategies. This study aimed to elucidate the key metabolic regulatory mechanisms during FPV infection.

Methods: CRFK cells were infected with the FPV013 strain.

View Article and Find Full Text PDF

Ferroptosis, an iron-dependent cell death pathway driven by lipid peroxidation, has emerged as a critical pathophysiological mechanism linking cancer and inflammatory diseases. The seemingly distinct pathologies exhibit shared microenvironmental hallmarks-oxidative stress, immune dysregulation, and metabolic reprogramming-that converge on ferroptosis regulation. This review synthesizes how ferroptosis operates at the intersection of these diseases, acting as both a tumor-suppressive mechanism and a driver of inflammatory tissue damage.

View Article and Find Full Text PDF