98%
921
2 minutes
20
Antimony (Sb) pollution poses a severe threat to humans and ecosystems due to the extensive use of Sb in various fields. However, little is known about the toxic effects of Sb and its aquatic ecotoxicological mechanism. This study aimed to reveal the toxicity and related molecular mechanisms of trivalent Sb (Sb(III)) in zebrafish embryos/larvae. Sb(III) accumulated in larvae, which correlated with the exposure concentration. Although no significant lethal or teratogenic effects were observed, normal growth and development were affected. Exposure to 10 or 20 mg/L Sb(III) increased the levels of reactive oxygen species in the larvae while enhancing catalase activity and increasing cell apoptosis. Transcriptomic analysis revealed that Sb(III) promoted glutathione metabolism and the ferroptosis pathway. In addition, symptoms associated with ferroptosis, including mitochondrial damage, biochemical levels of related molecules and increased tissue iron content, were detected. Quantitative polymerase chain reaction (qPCR) analyses further confirmed that Sb(III) significantly altered the transcription levels of genes related to the ferroptosis pathway by disrupting iron homeostasis. Furthermore, ferrostatin-1 (Fer-1) mitigated the toxic effects induced by Sb(III) in zebrafish. Our research fills the gap in the literature on the toxicity and mechanism of Sb(III) in aquatic organisms, which is highly important for understanding the ecological risks associated with Sb.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.envpol.2024.124551 | DOI Listing |
Cell Rep
September 2025
Michael DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON L8S 4K1, Canada; Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8S 4K1, Canada; David Braley Center for Antibiotic Discovery, McMaster University, Hamilton, ON L8S 4K
Many Gram-negative bacteria use type VI secretion systems (T6SSs) to deliver toxic effector proteins into neighboring cells. Proteins in the VasX toxin family form ion-permeable channels in the bacterial cytoplasmic membrane that dissipate the proton motive force, thereby interfering with essential physiological processes. However, the structure of any VasX family effector has remained unknown.
View Article and Find Full Text PDFNano Lett
September 2025
Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha 410082, China.
Interleukin-12 (IL-12) is a robust proinflammatory cytokine that activates immune cells, such as T cells and natural killer cells, to induce antitumor immunity. However, the clinical application of recombinant IL-12 has been limited by systemic immune-related adverse events (irAEs) and rapid degradation. To address these challenges, we employed mRNA technology to encode a tumor-activated IL-12 "lock" fusion protein that offers both therapeutic efficacy and systemic safety.
View Article and Find Full Text PDFJ Am Chem Soc
September 2025
Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China.
Low molecular weight amines promote sulfate (SO and HSO) formation through acid-base reactions, contributing to fine particulate matter (PM). Heterogeneous ozonation converts nontoxic amine salts into highly toxic products, yet the ozonation activation mechanism is unclear. This work reveals a sulfate-dominant ozonation mechanism of amine salts in fine PM by combining advanced mass spectrometry and ab initio calculation methods.
View Article and Find Full Text PDFMol Cell Biol
September 2025
Department of Hematology, Tohoku University Graduate School of Medicine, Sendai, Japan.
Erythropoiesis, i.e., process of red blood cell (RBC) production, is highly dependent on iron, with 60-70% of the total body iron incorporated into hemoglobin.
View Article and Find Full Text PDFHepatology
September 2025
Department of Pathology, Department of Molecular Biology, Moores Cancer Center, University of California San Diego, La Jolla, CA 92037, USA.
Background And Aims: So far, there is no effective mechanism-based therapeutic agent tailored for liver tumors. Immune checkpoint inhibitors (ICIs) have demonstrated limited efficacy in liver cancer, often associated with severe adverse effects. Although poly-inosinic:cytidylic acid (polyIC) has shown an adjuvant effect when combined with anti-PD-L1 antibody (αPD-L1) in treating liver tumors in animal models, its systemic toxicity limits its clinical utility.
View Article and Find Full Text PDF