Effects of Graphene Reinforcement on Static Bending, Free Vibration, and Torsion of Wind Turbine Blades.

Materials (Basel)

Department of Naval Architecture and Ocean Engineering, Hongik University, Sejong 30016, Republic of Korea.

Published: July 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Renewable energy markets, particularly wind energy, have experienced remarkable growth, predominantly driven by the urgent need for decarbonization in the face of accelerating global warming. As the wind energy sector expands and turbines increase in size, there is a growing demand for advanced composite materials that offer both high strength and low density. Among these materials, graphene stands out for its excellent mechanical properties and low density. Incorporating graphene reinforcement into wind turbine blades has the potential to enhance generation efficiency and reduce the construction costs of foundation structures. As a pilot study of graphene reinforcement on wind turbine blades, this study aims to investigate the variations of mechanical characteristics and weights between traditional fiberglass-based blades and those reinforced with graphene platelets (GPLs). A finite element model of the SNL 61.5 m horizontal wind turbine blade is used and validated by comparing the analysis results with those presented in the existing literature. Case studies are conducted to explore the effects of graphene reinforcement on wind turbine blades in terms of mechanical characteristics, such as free vibration, bending, and torsional deformation. Furthermore, the masses and fabrication costs are compared among fiberglass, CNTRC, and GPLRC-based wind turbine blades. Finally, the results obtained from this study demonstrate the effectiveness of graphene reinforcement on wind turbine blades in terms of both their mechanical performance and weight reduction.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11243585PMC
http://dx.doi.org/10.3390/ma17133332DOI Listing

Publication Analysis

Top Keywords

wind turbine
28
turbine blades
24
graphene reinforcement
20
reinforcement wind
16
wind
9
effects graphene
8
free vibration
8
wind energy
8
low density
8
mechanical characteristics
8

Similar Publications

Transcriptome Analysis Reveals the Mechanism of Early Branching of Balsa (Ochroma lagopus Swartz).

Physiol Plant

September 2025

CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, China.

Balsa (Ochroma lagopus Swartz), the world's lightest wood and a crucial material in wind turbine blades, holds significant potential to contribute to carbon neutrality efforts when cultivated in tropical areas such as Xishuangbanna, China. However, balsa trees planted in Xishuangbanna exhibit early branching, resulting in reduced wood yield. Our study investigated the pivotal factors in regulating shoot apical dominance and branching by comparing an early-branching cultivar from Indonesia with a late-branching cultivar from Ecuador.

View Article and Find Full Text PDF

Renewable energy systems are at the core of global efforts to reduce greenhouse gas (GHG) emissions and to combat climate change. Focusing on the role of energy storage in enhancing dependability and efficiency, this paper investigates the design and optimization of a completely sustainable hybrid energy system. Furthermore, hybrid storage systems have been used to evaluate their viability and cost-benefits.

View Article and Find Full Text PDF

In engineering structure performance monitoring, capturing real-time on-site data and conducting precise analysis are critical for assessing structural condition and safety. However, equipment instability and complex on-site environments often lead to data anomalies and gaps, hindering accurate performance evaluation. This study, conducted within a wind farm reinforcement project in Shandong Province, addresses these challenges by focusing on anomaly detection and data imputation for weld nail strain, anchor cable axial force, and concrete strain.

View Article and Find Full Text PDF

Objective: To evaluate the effectiveness and acceptability of ventilation interventions in naturally ventilated hospitals in Liberia.

Design: Difference-in-differences analysis of pre- and post-air changes per hour of intervention and control spaces.

Setting: Hospitals in Bong and Montserrado Counties, Liberia.

View Article and Find Full Text PDF

This study investigates the application of triboelectric separation technology for the efficient recovery of glass fibre-reinforced polymers (GFRPs) from wind turbine blade. Through systematic experiments, the effects of friction materials, electrode voltage and feed rate on separation efficiency were evaluated. The results demonstrate that using polymethyl methacrylate as the friction material, with an electrode voltage of 12.

View Article and Find Full Text PDF