Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Closely spaced promoters are ubiquitous in prokaryotic and eukaryotic genomes. How their structure and dynamics relate remains unclear, particularly for tandem formations. To study their transcriptional interference, we engineered two pairs and one trio of synthetic promoters in nonoverlapping, tandem formation, in single-copy plasmids transformed into cells. From in vivo measurements, we found that these promoters in tandem formation can have attenuated transcription rates. The attenuation strength can be widely fine-tuned by the promoters' positioning, natural regulatory mechanisms, and other factors, including the antibiotic rifampicin, which is known to hamper RNAP promoter escape. From this, and supported by in silico models, we concluded that the attenuation in these constructs emerges from premature terminations generated by collisions between RNAPs elongating from upstream promoters and RNAPs occupying downstream promoters. Moreover, we found that these collisions can cause one or both RNAPs to falloff. Finally, the broad spectrum of possible, externally regulated, attenuation strengths observed in our synthetic tandem promoters suggests that they could become useful as externally controllable regulators of future synthetic circuits.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11339919PMC
http://dx.doi.org/10.1021/acs.biochem.4c00012DOI Listing

Publication Analysis

Top Keywords

tandem formation
12
synthetic promoters
8
promoters nonoverlapping
8
nonoverlapping tandem
8
collisions rnaps
8
promoters
7
tandem
5
transcription attenuation
4
synthetic
4
attenuation synthetic
4

Similar Publications

Plasmalogens are a subclass of glycerophospholipids characterized by a vinyl-ether bond at the sn-1 position; they play several physiological roles including membrane stabilization, antioxidant activity, and signal transduction. While choline, ethanolamine, serine, and glycerol plasmalogens (PlsCho, PlsEtn, PlsSer, and PlsGro) are naturally abundant, inositol plasmalogens (PlsIns) are rare. In contrast to the limited occurrence of PlsIns, phosphatidylinositol is a biologically crucial lipid, and its enzymatic biosynthesis from phosphatidylcholine has been extensively studied.

View Article and Find Full Text PDF

Purpose: To assess the pharmacodynamic effects and therapeutic mechanisms of modified Fuzi decoction (MFZD) in osteoarthritis (OA), particularly OA-related inflammation.

Methods: The main components of MFZD were identified using Ultra Performance Liquid Chromatography-Tandem Mass Spectrometry (UPLC-MS/MS). An OA model was established in Sprague-Dawley rats via intra-articular injection of monoiodoacetate (MIA) to evaluate the anti-OA efficacy of MFZD via gavage.

View Article and Find Full Text PDF

Irsenontrine is a novel phosphodiesterase-9 inhibitor that has been developed for the treatment of cognitive dysfunction. To assess the pharmacokinetics, excretion, and distribution of the drug in humans, comprehensive assays for irsenontrine were developed using liquid chromatography with tandem mass spectrometry (LC-MS/MS) in three human matrices, including plasma, urine, and cerebrospinal fluid (CSF). Irsenontrine was extracted from the matrices by a straightforward protein precipitation method and subsequently separated on a reverse-phase column.

View Article and Find Full Text PDF

Introduction: Galectin-9 is a β-galactoside-binding lectin that functions as a critical pattern recognition receptor (PRR) in the host immune system, initiating immune defense responses by recognizing and binding to pathogen-associated molecular patterns (PAMPs) on the surface of microorganisms. In this study, we identified and characterized a novel galectin-9 cDNA, designated CcGal-9, from Yellow River carp ().

Methods: The full-length CcGal-9 cDNA was cloned and sequenced, and its structural features were analyzed.

View Article and Find Full Text PDF

Atomic layer deposition (ALD) enables an excellent surface coverage and uniformity in the preparation of large-area metal-oxide thin films. In particular, ALD-processed SnO has demonstrated great potential as an electron transport layer in flexible perovskite solar cells (PSCs) and tandem modules. However, the poor electrical conductivities and surface wettabilities of amorphous SnO remain critical challenges for commercialization.

View Article and Find Full Text PDF