Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: Neonatal necrotizing enterocolitis (NEC) is one of the most prevalent and severe intestinal emergencies in newborns. The inflammatory activation of macrophages is associated with the intestinal injury of NEC. The neuroimmune regulation mediated by α7 nicotinic acetylcholine receptor (α7nAChR) plays an important role in regulating macrophage activation and inflammation progression, but in NEC remains unclear. This study aims to explore the effect of macrophage α7nAChR on NEC.

Methods: Mice NEC model were conducted with high-osmolarity formula feeding, hypoxia, and cold stimulation. The α7nAChR agonist PNU-282987 and mTOR inhibitor rapamycin were treated by intraperitoneal injections in mice. The expression and distribution of macrophages, α7nAChR, and phospho-mammalian target of rapamycin (p-mTOR) in the intestines of NEC patients and mice was assessed using immunohistochemistry, immunofluorescence, and flow cytometry. The expression of NLRP3, activated caspase-1 and IL-1β in mice intestines was detected by flow cytometry, western blot or ELISA. In vitro, the mouse RAW264.7 macrophage cell line was also cultured followed by various treatments. Expression of p-mTOR, NLRP3, activated caspase-1, and IL-1β in macrophages was determined.

Results: Macrophages accumulated in the intestines and the expression of α7nAChR in the mucosal and submucosal layers of the intestines was increased in both the NEC patients and mice. The p-mTOR and CD68 were increased and co-localized in intestines of NEC patients. In vitro, α7nAChR agonist PNU-282987 significantly reduced the increase of NLRP3, activated caspase-1, and IL-1β in macrophages. PNU-282987 also significantly reduced the increase of p-mTOR. The effect was blocked by AMPK inhibitor compound C. The expression of NLRP3, activated caspase-1, and IL-1β was inhibited after mTOR inhibitor rapamycin treatment. In NEC model mice, PNU-282987 reduced the expression of p-mTOR, NLRP3, activated caspase-1, and IL-1β in the intestine. Meanwhile, rapamycin significantly attenuated NLRP3 activation and the release of IL-1β. Moreover, the proportion of intestinal macrophages and intestinal injury decreased after PNU-282987 treatment.

Conclusion: Macrophage α7nAChR activation mitigates NLRP3 inflammasome activation by modulating mTOR phosphorylation, and subsequently alleviates intestinal inflammation and injury in NEC.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.intimp.2024.112590DOI Listing

Publication Analysis

Top Keywords

nlrp3 activated
20
activated caspase-1
20
caspase-1 il-1β
20
macrophage α7nachr
12
nec patients
12
pnu-282987 reduced
12
nec
9
neonatal necrotizing
8
necrotizing enterocolitis
8
intestinal injury
8

Similar Publications

Targeting NLRP3 inflammasome with curcumin: mechanisms and therapeutic promise in chronic inflammation.

Inflammopharmacology

September 2025

Centre for Research Impact & Outcome, Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India.

The NOD‑like receptor family pyrin domain containing 3 (NLRP3) inflammasome is a key molecular complex that amplifies inflammatory cascades by maturing interleukin‑1 beta (IL-1β) and interleukin‑18 (IL-18) and inducing pyroptosis. It serves as a major driver and co-driver of numerous diseases associated with chronic inflammation. Dysregulated NLRP3 activation contributes to the progression of disorders such as rheumatoid arthritis, inflammatory bowel disease, neurodegenerative diseases and atherosclerosis.

View Article and Find Full Text PDF

Background: Cryopyrin-associated periodic syndrome (CAPS) is an autoinflammatory disease caused by a gain-of-function mutation in the gene, which regulates inflammasome-mediated interleukin-1β (IL-1β) production. This leads to recurrent episodes of fever, rash, and arthritis, typically beginning in childhood.

Objective: To demonstrate the role of a missense mutation, c.

View Article and Find Full Text PDF

Background: (Benth.) Baker is a perennial shrub endemic to the Tibetan Plateau. Its seeds are traditional Tibetan medicine for treating jaundice, hepatitis, purulent tonsillitis, diphtheria, and parasitosis.

View Article and Find Full Text PDF

Cell death in multiple sclerosis.

Cell Death Differ

September 2025

Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China.

Multiple sclerosis (MS) is a chronic autoimmune disorder of the central nervous system (CNS) characterized by inflammatory demyelination and progressive neurodegeneration. Although current disease-modifying therapies modulate peripheral autoimmune responses, they are insufficient to fully prevent tissue specific neuroinflammation and long-term neuronal and oligodendrocyte loss. Growing evidence implicates various regulated cell death (RCD) pathways, including apoptosis, necroptosis, pyroptosis, and ferroptosis, not only as downstream consequences of chronic inflammation, but also as active drivers of demyelination, axonal injury, and glial dysfunction in MS.

View Article and Find Full Text PDF

The sensing of Gram-negative Extracellular Vesicles (EVs) by the innate immune system has been extensively studied in the past decade. In contrast, recognition of Gram-positive EVs by innate immune cells remains poorly understood. Comparative genome-wide transcriptional analysis in human monocytes uncovered that S.

View Article and Find Full Text PDF