Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: Aortic endothelial diastolic dysfunction is an early complication of diabetes and the abnormal differentiation of Th17 cells is involved in the development of diabetes. However, the exact role of exercise on regulating the Th17 cells differentiation and the underlying molecular mechanisms remain to be elucidated in diabetic mice.

Methods: db/db and db/m mice were randomly divided into exercise and sedentary groups. Mice in exercise group were exercised daily, 6 days/week, for 6 weeks and mice in sedentary groups were placed on a nonmoving treadmill for 6 weeks. Vascular endothelial function was measured via wire myograph and the frequencies of Th17 from peripheral blood in mice were assessed via flow cytometry.

Results: Our data showed that exercise improved insulin resistance and aortic endothelial diastolic function in db/db mice. In addition, the proportion of Th17 cells and IL-17A level in peripheral blood of db/db mice were significantly increased, and exercise could promote Th17 cell differentiation and reduce IL-17A level. More importantly, STAT3 or ROR-γt inhibitors could promote Th17 cell differentiation in db/db mice, while exercise significantly down-regulated p-STAT3/ROR-γt signaling in db/db mice, suggesting that exercise regulated Th17 differentiation through STAT3/ROR-γt signaling.

Conclusions: This study demonstrated that exercise improved vascular endothelial function in diabetic mice via reducing Th17 cell differentiation through p-STAT3/ROR-γt pathway, suggesting exercise may be an important non-pharmacological intervention strategy for the treatment of diabetes-related vascular complications.

Download full-text PDF

Source
http://dx.doi.org/10.1080/10641963.2024.2373467DOI Listing

Publication Analysis

Top Keywords

th17 cell
16
cell differentiation
16
db/db mice
16
th17 cells
12
exercise
10
mice
10
diabetic mice
8
aortic endothelial
8
endothelial diastolic
8
th17
8

Similar Publications

predicts poor prognosis and modulates immune infiltration in gastric cancer: a TCGA-based bioinformatics study.

Front Genet

August 2025

Department of Gastrointestinal and Hernia Surgery, Ganzhou Hospital-Nanfang Hospital, Southern Medical University, Ganzhou, China.

Background: Gastric cancer (GC) is a leading cause of cancer-related mortality; however, biomarkers predicting its immunotherapy resistance remain scarce. Vascular cell adhesion molecule ()-, an immune cell adhesion mediator, is implicated in tumor progression; however, its prognostic and immunomodulatory roles in GC remain unclear.

Methods: In this study, we analyzed expression and its clinical relevance in GC using RNA-sequencing data from The Cancer Genome Atlas.

View Article and Find Full Text PDF

Background: Ulcerative colitis (UC) is a gastrointestinal inflammatory condition with an unclear etiology. Recent findings suggest that metabolites play a pivotal role in promoting intestinal health. We have previously observed a significant enrichment in colonic branched-chain amino acids (BCAAs) in resistant mice to colitis suggesting the potential role of these metabolites in UC development.

View Article and Find Full Text PDF

Evaluation of subsp. antigens capable of stimulating host IRG-47 release identifies Mmm604, Mmm605, and Mmm606 as potential subunit vaccine antigens.

Infect Immun

September 2025

National Contagious Bovine Pleuropneumonia Reference Laboratory, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China.

Contagious bovine pleuropneumonia (CBPP), caused by subsp. (Mmm), is a devastating cattle disease with high morbidity and mortality, threatening cattle productivity in Sub-Saharan Africa and potentially in parts of Asia. Cross-border livestock trade increases the risk of CBPP introduction or reintroduction.

View Article and Find Full Text PDF

Objective: Leishmaniasis, caused by protozoan parasites of the spp., presents significant global health challenges, with visceral leishmaniasis (VL) and cutaneous leishmaniasis forms causing severe morbidity and mortality. Macrophages serve as primary host cells, where spp.

View Article and Find Full Text PDF

Steroid-refractory gut acute graft-versus-host disease (SR-Gut-aGVHD) is the major cause of nonrelapse death after allogeneic hematopoietic cell transplantation. High numbers of donor-type IL-22+ T cells, IL-22-dependent dysbiosis, and loss of antiinflammatory CX3CR1hi mononuclear phagocytes (MNPs) play critical roles in SR-Gut-aGVHD pathogenesis. CEACAM1 on intestinal epithelial cells (IECs) is proposed to regulate bacterial translocation and subsequent immune responses in the intestine.

View Article and Find Full Text PDF