A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Graph Convolutional Network With Self-Supervised Learning for Brain Disease Classification. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Brain functional network (BFN) analysis has become a popular method for identifying neurological diseases at their early stages and revealing sensitive biomarkers related to these diseases. Due to the fact that BFN is a graph with complex structure, graph convolutional networks (GCNs) can be naturally used in the identification of BFN, and can generally achieve an encouraging performance if given large amounts of training data. In practice, however, it is very difficult to obtain sufficient brain functional data, especially from subjects with brain disorders. As a result, GCNs usually fail to learn a reliable feature representation from limited BFNs, leading to overfitting issues. In this paper, we propose an improved GCN method to classify brain diseases by introducing a self-supervised learning (SSL) module for assisting the graph feature representation. We conduct experiments to classify subjects with mild cognitive impairment (MCI) and autism spectrum disorder (ASD) respectively from normal controls (NCs). Experimental results on two benchmark databases demonstrate that our proposed scheme tends to obtain higher classification accuracy than the baseline methods.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TCBB.2024.3422152DOI Listing

Publication Analysis

Top Keywords

graph convolutional
8
self-supervised learning
8
brain functional
8
feature representation
8
brain
5
graph
4
convolutional network
4
network self-supervised
4
learning brain
4
brain disease
4

Similar Publications