Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

In situ cancer vaccination is an attractive strategy that stimulates protective antitumor immunity. Cytotoxic T lymphocytes (CTLs) are major mediators of the adaptive immune defenses, with critical roles in antitumor immune response and establishing immune memory, and are consequently extremely important for in situ vaccines to generate systemic and lasting antitumor efficacy. However, the dense extracellular matrix and hypoxia in solid tumors severely impede the infiltration and function of CTLs, ultimately compromising the efficacy of in situ cancer vaccines. To address this issue, a robust in situ cancer vaccine, Au@MnO nanoparticles (AMOPs), based on a gold nanoparticle core coated with a manganese dioxide shell is developed. The AMOPs modulated the unfavorable tumor microenvironment (TME) to restore CTLs infiltration and function and efficiently induced immunogenic cell death. The Mn-mediated stimulator of the interferon genes pathway can be activated to further augment the therapeutic efficacy of the AMOPs. Thus, the AMOPs vaccine successfully elicited long-lasting antitumor immunity to considerably inhibit primary, recurrent, and metastatic tumors. This study not only highlights the importance of revitalizing CTLs efficacy against solid tumors but also makes progress toward overcoming TME barriers for sustained antitumor immunity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11434106PMC
http://dx.doi.org/10.1002/advs.202403158DOI Listing

Publication Analysis

Top Keywords

infiltration function
12
situ cancer
12
antitumor immunity
12
solid tumors
8
antitumor
5
light-activated situ
4
situ vaccine
4
vaccine enhanced
4
enhanced cytotoxic
4
cytotoxic lymphocyte
4

Similar Publications

Analyzing the toxicological effects of PET-MPs on male infertility: Insights from network toxicology, mendelian randomization, and transcriptomics.

Reprod Biol

September 2025

Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China; Engineering Research Center of Biopreservation and Artificial Organs, Ministry of Education, No 218 Jixi Road, Hefei Anhui230022, China; Key Laboratory of Population Health Across

Current research indicates that polyethylene terephthalate microplastics (PET-MPs) may significantly impair male reproductive function. This study aimed to investigate the potential molecular mechanisms underlying this impairment. Potential gene targets of PET-MPs were predicted via the SwissTargetPrediction database.

View Article and Find Full Text PDF

Objective: .Aim: To investigate the pathomorphological changes in the terminal chorionic villi during COVID-19 in pregnant women.

Patients And Methods: Materials and Methods: A total of 123 placentas were studied in cases of live term births (groups І) and antenatal asphyxia (groups ІІ).

View Article and Find Full Text PDF

Cachexia, the loss of skeletal muscle mass and function with cancer, contributes to reduced life quality and worsened survival. Skeletal muscle fibrosis leads to disproportionate muscle weakness; however, the role of infiltrating immune cells and fibro-adipogenic progenitors (FAPs) in cancer-induced muscle fibrosis is not well understood. Using the C26 model of cancer cachexia, we sought to examine the changes to skeletal muscle immune cells and FAPs which contribute to excessive extracellular matrix (ECM) collagen deposition.

View Article and Find Full Text PDF

Background: Ankylosing spondylitis (AS), a chronic inflammatory disorder affecting axial joints, is frequently complicated by uveitis. However, the molecular mechanisms linking AS to secondary uveitis remain poorly understood.

Methods: We integrated transcriptomic datasets from AS (GSE73754) and uveitis (GSE194060) cohorts to identify shared molecular pathways.

View Article and Find Full Text PDF

Microscopic examination of biopsy tissues remains essential for cancer diagnosis, despite advancements in sequencing technologies. Alterations in nuclear size or the nuclear-to-cytoplasmic ratio are hallmark features of cancer cells and often correlate with disease progression. However, the mechanisms underlying nuclear size abnormalities and their impact on tumor progression remain unclear.

View Article and Find Full Text PDF