98%
921
2 minutes
20
Strain can modulate bandgap and carrier mobilities in two-dimensional (2D) materials. Conventional strain-application methodologies relying on flexible/patterned/nanoindented substrates are limited by low thermal tolerance, poor tunability, and/or scalability. Here, we leverage the converse piezoelectric effect to electrically generate and control strain transfer from a piezoelectric thin film to electromechanically coupled 2D MoS. Electrical bias polarity change across the piezo film tunes the nature of strain transferred to MoS from compressive (∼0.23%) to tensile (∼0.14%) as verified through Raman and photoluminescence spectroscopies and substantiated by density functional theory calculations. The device architecture, on silicon substrate, integrates an MoS field-effect transistor on a metal-piezoelectric-metal stack enabling strain modulation of transistor drain current (130×), on/off ratio (150×), and mobility (1.19×) with high precision, reversibility, and resolution. Large, tunable tensile (1056) and compressive (-1498) strain gauge factors, electrical strain modulation, and high thermal tolerance promise facile integration with silicon-based CMOS and micro-electromechanical systems.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11262308 | PMC |
http://dx.doi.org/10.1021/acs.nanolett.4c00357 | DOI Listing |
Drug Resist Updat
September 2025
Department of Orthopaedic Surgery, the First Affiliated Hospital, Fujian Medical University, Fuzhou, China; Department of Orthopaedic Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China. Electronic address: fangxinyu0417
Aims: In chronic osteomyelitis, the cortical bone serves as the primary site for long-term persistence of Staphylococcus aureus (S. aureus), the present study aimed to explore the mechanisms of immune evasion and antibiotic resistance remain incompletely understood.
Methods: Clinical methicillin-resistant S.
J Phys Chem Lett
September 2025
National Laboratory of Solid-State Microstructures, School of Electronic Science and Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, P. R. China.
Stress engineering is an effective way to tune the performance of semiconductors, which has been verified in the work of inorganic and organic single-crystal semiconductors. However, due to the limitations of the vapor-phase growth preparation conditions, the deposited polycrystalline organic semiconductors are more susceptible to residual stress. Therefore, it is of great research significance to develop a low-cost stress engineering applicable to vapor-deposited semiconductors.
View Article and Find Full Text PDFJ Virol
September 2025
Department of Pathology, The University of Texas Medical Branch at Galveston, Galveston, Texas, USA.
Unlabelled: Oropouche fever is a debilitating disease caused by Oropouche virus (OROV), an arthropod-borne member of the Peribunyaviridae family. Despite its public health significance, the molecular mechanisms driving OROV pathogenesis remain poorly understood. In other bunyaviruses, the nonstructural NSs protein encoded by the small (S) genome segment acts as a major virulence factor.
View Article and Find Full Text PDFEnviron Microbiol Rep
October 2025
DynaMo Center, Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Frederiksberg, Denmark.
Natural soils are reservoirs of potentially beneficial microbes that can improve plant performance. Here, we isolated 75 bacterial strains from surface-sterilised roots of Arabidopsis thaliana (Arabidopsis) grown in a natural soil derived from an alder swamp. Culture-dependent isolation of individual strains from the roots, followed by monoassociation-based screening, identified seven bacteria that promoted Arabidopsis seedling weight.
View Article and Find Full Text PDFMed Int (Lond)
August 2025
Department of Epidemiology, School of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, P.R. China.
Punicalagin, a polyphenolic compound extracted from pomegranate peel, has received increasing attention in recent years due to its antibacterial and antiviral properties. Punicalagin is capable of inhibiting bacterial growth at sub-inhibitory concentrations by affecting cell membrane formation, disrupting membrane integrity, altering cell permeability, affecting efflux pumps, interfering with quorum sensing and influencing virulence factors. Additionally, punicalagin inhibits viruses by modulating enzyme activity, interacting with viral surface proteins, affecting gene expression, blocking viral attachment, disrupting virus receptor interaction and inhibiting viral replication.
View Article and Find Full Text PDF