Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

To synthesize the fundamental framework of dihydroagarofuran, a novel strategy was devised for constructing the C-ring through a dearomatization reaction using 6-methoxy-1-tetralone as the initial substrate. Subsequently, the dihydroagarofuran skeleton was assembled via two consecutive Michael addition reactions. The conjugated diene and trans-dihydroagarofuran skeleton were modified. The insecticidal activities of 33 compounds against were evaluated. Compounds - exhibited an LC value of 0.378 mg/mL. The activity exhibited a remarkable 29-fold increase compared to positive control Celangulin V, which was widely recognized as the most renowned natural dihydroagarofuran polyol ester insecticidal active compound. Docking experiments between synthetic compounds and target proteins revealed the shared binding sites with Celangulin V. Structure-activity relationship studies indicated that methyl groups at positions C4 and C10 significantly improved insecticidal activity, while ether groups with linear chains displayed enhanced activity; in particular, the allyl ether group demonstrated optimal efficacy. Furthermore, a three-dimensional quantitative structure-activity relationship model was established to investigate the correlation between the skeletal structure and activity. These research findings provide valuable insights for discovering and developing dihydroagarofuran-like compounds.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jafc.4c01690DOI Listing

Publication Analysis

Top Keywords

insecticidal activity
8
structure-activity relationship
8
activity
5
synthetic modification
4
insecticidal
4
modification insecticidal
4
activity 4--cis-dihydroagarofuran
4
4--cis-dihydroagarofuran derivatives
4
derivatives synthesize
4
synthesize fundamental
4

Similar Publications

A strategically engineered, eco-conscious synthetic platform was developed to access a novel library of eighteen polyfunctionalized pyridine-based heterocycles through high-efficiency multicomponent and annulation strategies, using 2-amino-4-(4-chlorophenyl)-6-(p-tolyl)nicotinonitrile (M) as a privileged core. Structural diversity was maximized by integrating potent pharmacophores, including pyrido[2,3-d]pyrimidines, naphthyridines, triazines, and fused pyrrolo/tetrazolo motifs, via both conventional and accelerated (microwave/ultrasound-assisted) routes, affording excellent yields with high structural fidelity as confirmed by IR, H/C NMR, and mass spectrometry. Biological evaluation revealed that all synthesized compounds had excellent larvicidal efficacy against Culex pipiens larvae, especially 15 and 9, emerging as lead candidates that exhibited exceptional LC₅₀ values of 0.

View Article and Find Full Text PDF

Proteomic characterization and lethality of the venom of the Black Judean scorpion, Hottentotta judaicus (Buthidae): expanded toxin diversity and revisited toxicological significance.

Arch Toxicol

September 2025

Laboratorio de Proteómica, Facultad de Microbiología, Instituto Clodomiro Picado, Universidad de Costa Rica, San José, 11501, Costa Rica.

The scorpion Hottentotta judaicus inhabits the Levant region of the Middle East, including Lebanon, Jordan, Palestine, and Israel. While previous research focused on its insecticidal properties and sodium-channel-targeting toxins, its venom remains largely unexplored using modern proteomic approaches. We analyzed the venom composition of H.

View Article and Find Full Text PDF

The Natural Product Osthole, Known for Its Insecticidal and Antimicrobial Properties, Potentially Binds to Amidase, Offering a Novel Approach for Controlling Tomatoes Gray Mold for the First Time.

Phytopathology

September 2025

Guizhou University, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Huaxi District, Guiyang, Guizhou Province of China, Guiyang, China, 550025;

Osthole exhibits strong inhibitory activity against phytopathogenic fungi; however, its antifungal mechanism remains unclear. This study assessed osthole's inhibitory effects on several phytopathogenic fungi, revealing a half-maximal effective concentration of 70.03 μg/ml against the hyphal growth of .

View Article and Find Full Text PDF

This study evaluated how dietary black seed oil (Nigella sativa L.) against the diazinon waterborne toxicity on Nile tilapia (Oreochromis niloticus), focusing on growth performance, hematological and biochemical parameters as well as oxidative stress markers and histological changes. A 40-day feeding trial was carried out using four experimental groups: Group 1 (control group), Group 2 (N.

View Article and Find Full Text PDF